Concept explainers
a.
Normalization:
The process used to minimize data redundancy and dependency in a relational
Second normal form (2NF):
- The value of all non-primary key attributes should be dependent on the primary key attribute.
- If any attribute is depending on the partial primary key then it should determine the other attributes for an instance of the entity.
- The partial dependencies should be removed from the data model.
Third normal form (3NF):
- The value of any non-primary key attributes will not depend on any other non-primary key attributes.
- If any non-primary key attributes depend on any other non-primary key attribute then it should be moved or deleted.
- It is termed as transitive dependency.
Partial dependency:
A partial dependency exists at that time of an attributes depends only a part of primary key. This dependency is related with 1st normal form.
Transitive dependency:
A transitive dependency exists at that time of an attributes depends on another attribute which is not part of primary key.
Functional dependency:
An association between two attributes or two set of attributes in a same relational database table, which is having some constraints is known as functional dependency.
- In a table one attribute is functionally dependent on another attribute to take one value.
a.
Explanation of Solution
Construct the dependency diagram with all partial and transitive dependencies:
The relational schema for given INVOICE table is given below:
Invoice(INV_NUM, PROD_NUM, SALE_DATE, PROD_LABEL, VEND_CODE, VEND_NAME, QUANT_SOLD, PROD_PRICE)
- Here, “INV_NUM” and “PROD_NUM” indicates the primary key.
The representation of dependency diagram with all partial and transitive dependencies is shown below:
Explanation:
In the above dependency diagram,
- The partial dependencies are,
INV_NUM -> (SALE_DATE)
PROD_NUM -> (PROD_LABEL, VEND_CODE, VEND_NAME, PROD_PRICE)
- The transitive dependency is,
VEND_CODE -> (VEND_NAME)
b.
Normalization:
The process used to minimize data redundancy and dependency in a relational database is known as normalization. The database table is divided into two or more tables and defines the relationship between those tables.
Second normal form (2NF):
- The value of all non-primary key attributes should be dependent on the primary key attribute.
- If any attribute is depending on the partial primary key then it should determine the other attributes for an instance of the entity.
- The partial dependencies should be removed from the data model.
Third normal form (3NF):
- The value of any non-primary key attributes will not depend on any other non-primary key attributes.
- If any non-primary key attributes depend on any other non-primary key attribute then it should be moved or deleted.
- It is termed as transitive dependency.
Partial dependency:
A partial dependency exists at that time of an attributes depends only a part of primary key. This dependency is related with 1st normal form.
Transitive dependency:
A transitive dependency exists at that time of an attributes depends on another attribute which is not part of primary key.
Functional dependency:
An association between two attributes or two set of attributes in a same relational database table, which is having some constraints is known as functional dependency.
- In a table one attribute is functionally dependent on another attribute to take one value.
b.
Explanation of Solution
Construct the dependency diagram by removing all partial dependencies:
The new dependency diagram is represented by removing all partial dependencies in INVOICE table.
First table:
The relational schema for first table is given below:
3NF(INV_NUM, PROD_NUM, SALE_DATE, QUANT_SOLD)
- Here, “INV_NUM” and “PROD_NUM” indicates the primary keys.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all partial dependencies in first table are shown below:
Second table:
The relational schema for second table is given below:
3NF(INV_NUM, SALE_DATE)
- Here, “INV_NUM” indicates the primary key.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all partial dependencies in second table are shown below:
Third table:
The relational schema for third table is given below:
2NF(PROD_NUM, PROD_LABEL, VEND_CODE, VEND_NAME, PROD_PRICE)
- Here, “PROD_NUM” indicates the primary key.
- The relation is in third normal form (2NF), since there is transitive dependency in table.
The representation of dependency diagram removes all partial dependencies in third table are shown below:
c.
Normalization:
The process used to minimize data redundancy and dependency in a relational database is known as normalization. The database table is divided into two or more tables and defines the relationship between those tables.
Second normal form (2NF):
- The value of all non-primary key attributes should be dependent on the primary key attribute.
- If any attribute is depending on the partial primary key then it should determine the other attributes for an instance of the entity.
- The partial dependencies should be removed from the data model.
Third normal form (3NF):
- The value of any non-primary key attributes will not depend on any other non-primary key attributes.
- If any non-primary key attributes depend on any other non-primary key attribute then it should be moved or deleted.
- It is termed as transitive dependency.
Partial dependency:
A partial dependency exists at that time of an attributes depends only a part of primary key. This dependency is related with 1st normal form.
Transitive dependency:
A transitive dependency exists at that time of an attributes depends on another attribute which is not part of primary key.
Functional dependency:
An association between two attributes or two set of attributes in a same relational database table, which is having some constraints is known as functional dependency.
- In a table one attribute is functionally dependent on another attribute to take one value.
c.
Explanation of Solution
Construct the dependency diagram by removing all transitive dependencies:
The new dependency diagram is represented by removing all transitive dependencies in INVOICE table.
First table:
The relational schema for first table is given below:
3NF(INV_NUM, PROD_NUM, QUANT_SOLD)
- Here, “INV_NUM” and “PROD_NUM” indicates the primary keys.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all partial dependencies in first table are shown below:
Second table:
The relational schema for second table is given below:
3NF(INV_NUM, SALE_DATE)
- Here, “INV_NUM” indicates the primary key.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all transitive dependencies in second table are shown below:
Third table:
The relational schema for third table is given below:
3NF(VEND_CODE, VEND_NAME)
- Here, “VEND_CODE” indicates the primary key.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all transitive dependencies in third table are shown below:
Fourth table:
The relational schema for final table is given below:
2NF(PROD_NUM, PROD_LABEL, VEND_CODE, PROD_PRICE)
- Here, “PROD_NUM” indicates the primary key.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all transitive dependencies are shown below:
d.
Explanation of Solution
The representation of Crow’s Foot Entity Relational Diagram (ERD) is shown below:
The following data model shows the solution for the given question.
Explanation:
- In the above data model, one invoice can contains many invoice line.
- The “INVOICE” entity contains the “INV_NUM” and “SALE_DATE” attributes.
- The primary key of “INVOICE” entity is “INV_NUM”.
- The “INV_LINE” entity contains the “INV_NUM”, “PROD_NUM” and “QUANT_SOLD” attributes.
- The primary and foreign key of this entity is “INV_NUM”.
- The foreign key of this entity is “PROD_NUM”.
- The “INVOICE” entity contains the “INV_NUM” and “SALE_DATE” attributes.
- The product is written in more than one invoice line.
- The “PRODUCT” entity contains the “PROD_NUM”, “VEND_CODE”, “PROD_LABEL”, and “PROD_PRICE” attributes.
- The primary key of “PROD_NUM” for this entity.
- The foreign key of this entity is “VEND_CODE”.
- The “PRODUCT” entity contains the “PROD_NUM”, “VEND_CODE”, “PROD_LABEL”, and “PROD_PRICE” attributes.
- The vendor supplies more than one product.
- The “VENDOR” entity contains the “VEND_CODE” and “VEND_NAME” attributes.
- The primary key of “VEND_CODE” entity.
- The “VENDOR” entity contains the “VEND_CODE” and “VEND_NAME” attributes.
Want to see more full solutions like this?
Chapter 6 Solutions
Database Systems: Design, Implementation, & Management
- Discuss the negative and positive impacts or information technology in the context of your society. Provide two references along with with your answerarrow_forwardA cylinder of diameter 10 cm rotates concentrically inside another hollow cylinder of inner diameter 10.1 cm. Both cylinders are 20 cm long and stand with their axis vertical. The annular space is filled with oil. If a torque of 100 kg cm is required to rotate the inner cylinder at 100 rpm, determine the viscosity of oil. Ans. μ= 29.82poisearrow_forwardMake the following game user friendly with GUI, with some simple graphics The following code works as this: The objective of the player is to escape from this labyrinth. The player starts at the bottom left corner of the labyrinth. He has to get to the top right corner of the labyrinth as fast he can, avoiding a meeting with the evil dragon. The player can move only in four directions: left, right, up or down. There are several escape paths in all labyrinths. The player’s character should be able to moved with the well known WASD keyboard buttons. If the dragon gets to a neighboring field of the player, then the player dies. Because it is dark in the labyrinth, the player can see only the neighboring fields at a distance of 3 units. Cell Class: public class Cell { private boolean isWall; public Cell(boolean isWall) { this.isWall = isWall; } public boolean isWall() { return isWall; } public void setWall(boolean isWall) { this.isWall = isWall; } @Override public String toString() {…arrow_forward
- Please original work What are four of the goals of information lifecycle management think they are most important to data warehousing, Why do you feel this way, how dashboards can be used in the process, and provide a real life example for each. Please cite in text references and add weblinksarrow_forwardThe following is code for a disc golf program written in C++: // player.h #ifndef PLAYER_H #define PLAYER_H #include <string> #include <iostream> class Player { private: std::string courses[20]; // Array of course names int scores[20]; // Array of scores int gameCount; // Number of games played public: Player(); // Constructor void CheckGame(int playerId, const std::string& courseName, int gameScore); void ReportPlayer(int playerId) const; }; #endif // PLAYER_H // player.cpp #include "player.h" #include <iomanip> Player::Player() : gameCount(0) {} void Player::CheckGame(int playerId, const std::string& courseName, int gameScore) { for (int i = 0; i < gameCount; ++i) { if (courses[i] == courseName) { // If course has been played, then check for minimum score if (gameScore < scores[i]) { scores[i] = gameScore; // Update to new minimum…arrow_forwardIn this assignment, you will implement a multi-threaded program (using C/C++) that will check for Prime Numbers and Palindrome Numbers in a range of numbers. Palindrome numbers are numbers that their decimal representation can be read from left to right and from right to left (e.g. 12321, 5995, 1234321). The program will create T worker threads to check for prime and palindrome numbers in the given range (T will be passed to the program with the Linux command line). Each of the threads works on a part of the numbers within the range. Your program should have some global shared variables: • numOfPrimes: which will track the total number of prime numbers found by all threads. numOfPalindroms: which will track the total number of palindrome numbers found by all threads. numOfPalindromic Primes: which will count the numbers that are BOTH prime and palindrome found by all threads. TotalNums: which will count all the processed numbers in the range. In addition, you need to have arrays…arrow_forward
- How do you distinguish between hardware and a software problem? Discuss theprocedure for troubleshooting any hardware or software problem. give one reference with your answer.arrow_forwardYou are asked to explain what a computer virus is and if it can affect computer’shardware or software. How do you protect your computer against virus? give one reference with your answer.arrow_forwardDistributed Systems: Consistency Models fer to page 45 for problems on data consistency. structions: Compare different consistency models (e.g., strong, eventual, causal) for distributed databases. Evaluate the trade-offs between availability and consistency in a given use case. Propose the most appropriate model for the scenario and explain your reasoning. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440AZF/view?usp=sharing]arrow_forward
- Operating Systems: Deadlock Detection fer to page 25 for problems on deadlock concepts. structions: • Given a system resource allocation graph, determine if a deadlock exists. If a deadlock exists, identify the processes and resources involved. Suggest strategies to prevent or resolve the deadlock and explain their trade-offs. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardArtificial Intelligence: Heuristic Evaluation fer to page 55 for problems on Al search algorithms. tructions: Given a search problem, propose and evaluate a heuristic function. Compare its performance to other heuristics based on search cost and solution quality. Justify why the chosen heuristic is admissible and/or consistent. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 75 for graph-related problems. Instructions: • Implement a greedy graph coloring algorithm for the given graph. • Demonstrate the steps to assign colors while minimizing the chromatic number. • Analyze the time complexity and limitations of the approach. Link [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZF/view?usp=sharing]arrow_forward
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education