Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 35P
To determine
Whether given function is Eigen function of the momentum operator; Eigen value for Eigen function.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Which of the following are eigen functions of the operator d2/dx2 , find the corresponding eigen value?
(i) Sin x (ii) Sin2x (iii) e2x
Check if the following operators with the corresponding functions could
form an eigen value equations or not (where Bis a constant value)
No.
function
Оperator
3
2
3
sin(ßx)
sin(Bx)
d
dx
4
sin(ßx)
dx
Be
Chapter 6 Solutions
Modern Physics
Ch. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.5 - Prob. 4ECh. 6.7 - Prob. 5ECh. 6.8 - Prob. 6ECh. 6 - Prob. 1QCh. 6 - Prob. 2QCh. 6 - Prob. 3QCh. 6 - Prob. 4QCh. 6 - Prob. 5Q
Ch. 6 - Prob. 6QCh. 6 - Prob. 7QCh. 6 - Prob. 8QCh. 6 - Prob. 1PCh. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 5PCh. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 21PCh. 6 - Prob. 24PCh. 6 - Prob. 25PCh. 6 - Prob. 26PCh. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 37PCh. 6 - Prob. 38P
Knowledge Booster
Similar questions
- i li. 9 V:OV docs.google.com/forms/d/e Which function is preferable to find the magnitude of a complex number? * sqrt() cart2pol() MATLAB does not support complex arguments abs() All matrices are vectors but all vectors are not matrices in MATLAB * False True Compute 24 modulo 5. b = mod(24,5) * b =6 b =4 b =5 b = 3 O Oarrow_forwardif A is an operator and it satisfies the equation, A2-3A+2=0 then how to find eigenvalues and eigenstatesarrow_forwardWhat is y(x) (i.e., y as a function of x) given that dy dx X where you are given the boundary condition that y = yo at x = xo where yo and ro are constants.arrow_forward
- Consider a finite potential well of depth -Uo. Consider the case -U₁ < E <0. -Uo -a +aarrow_forwardFor l = 2, determine the matrix representation of the following operators a) L dan L_ b) Lx, Ly, dan Lzarrow_forwardLet there be two operators, Aˆ =∂/∂ x and ∇2(x, y, z) = ∂2/∂2x +∂2/∂2y +∂2/∂2z. Which of the followingfunctions are eigenfunctions of Aˆ or ∇2 ? Which are the eigenvalues?a) ψ(x) = xab) ψ(x) = log(ax)c) ψ(x) = exp(ax)d) ψ(x) = cos(ax)e) ψ(x) = cos(ax) + isin(ax)arrow_forward
- For the function f(z) = 2+2 of complex variable z, which of the following statements is incorrect? z2-2z Select one: Oa. z=0 is a simple pole with residue -1 Ob. z=2 is a simple pole with residue 2 ○ c. Both the first two options are correct O d. None of the first two options are correctarrow_forwardplease provide detailed solution for a to c, thank youarrow_forwardIf three operators A, B and C are such that [A, B] = 0, [Â, C] # 0,, [B,Ĉ] = 0 Show that [Â, [B, Ĉ] ] = [B, [Â, Ĉ]]arrow_forward
- Consider the following operator imp Â= and the following functions that are both eigenfunctions of this operator. mm (0) = e² ‚ (ø) = (a) Show that a linear combination of these functions d² dø² is also an eigenfunction of the operator. (b) What is the eigenvalue? -m imp c₁e¹m + c₂e² -imp -imp = earrow_forwardConsider the following operators on a Hilbert space V³(C) : 0-i 0 SHABSB 101 Ly= 0 -i Lz 00 0 √2 0 i 0 LI √2 010 010 10 00 0 If the particle is in state |L₂ = −1) and L₂ is measured, what are the possible outcomes and their probabilities?arrow_forwardThe Hamiltonian of an electron of mass m in a constant electric field E in one dimension can be written as Ĥ=+eEx where â and are the position and momentum operators, respectively. With initials conditions (t = 0) = 0 and p(t = 0) = 0, which one of the following gives (t) at time in the Heisenberg picture? You may use the commutator [â,p] = iħ. O a. O b. eEt2 2m O C. e Et O d. -eEt O e. eEt² m pt marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning