Modern Physics
Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
Question
Book Icon
Chapter 6, Problem 17P

(a)

To determine

The sketch of wave functions and probability density for n=1 and n=2 states.

(a)

Expert Solution
Check Mark

Answer to Problem 17P

The sketch of wave functions and probability density for n=1 and n=2 states is plotted below.

Explanation of Solution

The sketch of wave function is plotted below.

Modern Physics, Chapter 6, Problem 17P , additional homework tip  1

The sketch of probability density is plotted below.

Modern Physics, Chapter 6, Problem 17P , additional homework tip  2

Conclusion:

The sketch of wave functions and probability density for n=1 and n=2 states is plotted above.

(b)

To determine

The probability of finding the electron between 0.15 nm and 0.35 nm for n=1 state.

(b)

Expert Solution
Check Mark

Answer to Problem 17P

The probability of finding the electron for n=1 state is 0.200 .

Explanation of Solution

Write the expression for wave function.

  ψ(x)=2Lsin(nπxL)        (I)

Here, A is normalization constant, x is position of box, n is energy state, L is the length of box and ψ(x) is the wave function.

Write the expression for probability.

  P=0L/3|ψ|2dx        (II)

Conclusion:

Substitute 2Lsin(nπxL) for ψ(x)  and substitute 1 for n in equation (II).

  P=(2L)LiLfsin2(πxL)dx

Substitute 1.5Ao for Li , 3.5Ao for Lf and 10Ao for L in above equation and simplify.

  P=110[x5πsin(πx5)]1.53.5=15{3.55πsin[π(3.5)5]1.5+5πsin[π(1.5)5]}=0.200

Thus, the probability of finding the electron for n=1 state is 0.200 .

(c)

To determine

The probability of finding the electron between 0.15 nm and 0.35 nm for n=1 state.

(c)

Expert Solution
Check Mark

Answer to Problem 17P

The probability of finding the electron for n=2 state is 0.351 .

Explanation of Solution

Conclusion:

Substitute 2Lsin(nπxL) for ψ(x)  and substitute 2 for n in equation (II).

  P=(2L)LiLfsin2(2πxL)dx

Substitute 1.5Ao for Li , 3.5Ao for Lf and 10Ao for L in above equation and simplify.

  P=110[x52πsin(0.4πx)]1.53.5=15{3.552πsin(1.4π)1.5+52πsin[0.6π]}=0.351

Thus, the probability of finding the electron for n=2 state is 0.351 .

(d)

To determine

The energies in electron volts for n=1 and n=2 states.

(d)

Expert Solution
Check Mark

Answer to Problem 17P

The energy for n=1 state is 37.7eV and the energy for n=2 state is 151eV .

Explanation of Solution

Write the expression for energy of particle.

  E=n2h28mL2        (III)

Here, n is the energy level, h is the Planck’s constant, m is the mass of particle, L is the length of box and E is the energy of particle.

Conclusion:

Substitute 6.63×1034Js for h , 1010m for L, 9.11×1031kg for m and 1 for n in equation (III).

  E1=(1)2(6.63×1034Js)28(9.11×1031kg)(1010m)2=37.7eV

Substitute 6.63×1034Js for h , 1010m for L, 9.11×1031kg for m and 2 for n in equation (III).

  E2=(2)2(6.63×1034Js)28(9.11×1031kg)(1010m)2=151eV

Thus, the energy for n=1 state is 37.7eV and the energy for n=2 state is 151eV .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processes
m C A block of mass m slides down a ramp of height hand collides with an identical block that is initially at rest. The two blocks stick together and travel around a loop of radius R without losing contact with the track. Point A is at the top of the loop, point B is at the end of a horizon- tal diameter, and point C is at the bottom of the loop, as shown in the figure above. Assume that friction between the track and blocks is negligible. (a) The dots below represent the two connected blocks at points A, B, and C. Draw free-body dia- grams showing and labeling the forces (not com ponents) exerted on the blocks at each position. Draw the relative lengths of all vectors to reflect the relative magnitude of the forces. Point A Point B Point C (b) For each of the following, derive an expression in terms of m, h, R, and fundamental constants. i. The speed of moving block at the bottom of the ramp, just before it contacts the stationary block ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 s
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning