Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 24P
(a)
To determine
The expression for
(b)
To determine
The normalization constant of the wave.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
= =
An electron having total energy E 4.60 eV approaches a rectangular energy barrier with U■5.10 eV and L-950 pm as shown in the figure below. Classically, the electron cannot pass through the barrier
because E < U. Quantum-mechanically, however, the probability of tunneling is not zero.
Energy
E
U
0
i
(a) Calculate this probability, which is the transmission coefficient. (Use 9.11 x 10-31 kg for the mass of an electron, 1.055 x 10-34] s for h, and note that there are 1.60 x 10-19
J per eV.)
(b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.60-eV electron tunneling through the barrier to be one in one million?
nm
Problem 3. Consider the two example systems from quantum mechanics. First, for a
particle in a box of length 1 we have the equation
h² d²v
2m dx²
EV,
with boundary conditions (0) = 0 and (1) = 0.
Second, the Quantum Harmonic Oscillator (QHO)
V = EV
h² d²
2m da² +ka²)
1
+kx²
2
(a) Write down the states for both systems. What are their similarities and differences?
(b) Write down the energy eigenvalues for both systems. What are their similarities
and differences?
(c) Plot the first three states of the QHO along with the potential for the system.
(d) Explain why you can observe a particle outside of the "classically allowed region".
Hint: you can use any state and compute an integral to determine a probability of
a particle being in a given region.
In a certain region of space, a particle is described by the wave function ψ=Cxe−bx where C is a real constants, b =0.5, and m=3.2. By substituting into the Schrodinger equation, find the potential energy (not necessarily constant) in this region and also find the energy of the particle. (Hint: Your solution must give an energy that is a constant everywhere in this region, independent of x.)
Chapter 6 Solutions
Modern Physics
Ch. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.5 - Prob. 4ECh. 6.7 - Prob. 5ECh. 6.8 - Prob. 6ECh. 6 - Prob. 1QCh. 6 - Prob. 2QCh. 6 - Prob. 3QCh. 6 - Prob. 4QCh. 6 - Prob. 5Q
Ch. 6 - Prob. 6QCh. 6 - Prob. 7QCh. 6 - Prob. 8QCh. 6 - Prob. 1PCh. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 5PCh. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 21PCh. 6 - Prob. 24PCh. 6 - Prob. 25PCh. 6 - Prob. 26PCh. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 37PCh. 6 - Prob. 38P
Knowledge Booster
Similar questions
- Calculate the probability that an electron will be found (a) between x = 0.1 and 0.2 nm, (b) between 4.9 and 5.2 nm in a box of length L = 10 nm when its wavefunction is Ψ = (2/L)1/2 sin(2πx/L). Treat the wavefunction as a constant in the small region of interest and interpret δV as δx.arrow_forward∆E ∆t ≥ ħTime is a parameter, not an observable. ∆t is some timescale over which the expectation value of an operator changes. For example, an electron's angular momentum in a hydrogen atom decays from 2p to 1s. These decays are relativistic, however the uncertainty principle is still valid, and we can use it to estimate uncertainties. ∆E doesn't change in time, so when an excited state decays to the ground state (infinite lifetime, so no energy uncertainty), the energy uncertainty has to go somewhere. Usually, it’s in the frequency of a photon giving a width (through E = hν) to the transition line in an spectroscopy experiment. The linewidth of the 2p state in 9Be+ is 19.4 MHz. What is its lifetime? (Note: in the relativistic atom–photon system, the Hamiltonian is independent of time and both energy and its uncertainty are conserved.)arrow_forward∆E ∆t ≥ ħTime is a parameter, not an observable. ∆t is some timescale over which the expectation value of an operator changes. For example, an electron's angular momentum in a hydrogen atom decays from 2p to 1s. These decays are relativistic, however the uncertainty principle is still valid, and we can use it to estimate uncertainties. The lifetime of hydrogen in the 2p state to decay to the Is ground state is 1.6 x 10-9 s. Estimate the uncertainty ∆E in energy of this excited state. What is the corresponding linewidth in angstroms?arrow_forward
- Solving the Schrödinger equation for a particle of energy E 0 Calculate the values of the constants D, C, B, and A if knownCalculate the values of the constants D, C, B, and A if known and 2mE 2m(Vo-E) a =arrow_forwardIn the lab you make a simple harmonic oscillator with a 0.15-kg mass attached to a 12-N/m spring. (a) If the oscillation amplitude is 0.10 m, what is the corresponding quantum number n for the quantum harmonic oscillator? (b) What would be the amplitude of the quantum ground state for this oscillator? (c) What is the energy of a photon emitted when this oscillator makes a transition between adjacent energy levels? Comment on each of your results.arrow_forwardA function of the form e^−gx2 is a solution of the Schrodinger equation for the harmonic oscillator, provided that g is chosen correctly. In this problem you will find the correct form of g. (a) Start by substituting Ψ = e^−gx2 into the left-hand side of the Schrodinger equation for the harmonic oscillator and evaluating the second derivative. (b) You will find that in general the resulting expression is not of the form constant × Ψ, implying that Ψ is not a solution to the equation. However, by choosing the value of g such that the terms in x^2 cancel one another, a solution is obtained. Find the required form of g and hence the corresponding energy. (c) Confirm that the function so obtained is indeed the ground state of the harmonic oscillator and has the correct energy.arrow_forward
- A particle with mass m is moving in three-dimensions under the potential energy U(r), where r is the radial distance from the origin. The state of the particle is given by the time-independent wavefunction, Y(r) = Ce-kr. Because it is in three dimensions, it is the solution of the following time-independent Schrodinger equation dıp r2 + U(r)µ(r). dr h2 d EÞ(r) = 2mr2 dr In addition, 00 1 = | 4ar?y? (r)dr, (A(r)) = | 4r²p²(r)A(r)dr. a. Using the fact that the particle has to be somewhere in space, determine C. Express your answer in terms of k. b. Remembering that E is a constant, and the fact that p(r) must satisfy the time-independent wave equation, what is the energy E of the particle and the potential energy U(r). (As usual, E and U(r) will be determined up to a constant.) Express your answer in terms of m, k, and ħ.arrow_forwardA particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following. (a) What is the wavelength (in m) of the wave function for the particle? m (b) What is its ground-state energy (in eV)? eV (c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box is the same as the ground-state energy found for the first box in part (b)? m (d) What would be the wavelength (in m) of the wave function for the particle in that case? marrow_forwardStep by step and integrate the wavefunction from 0 to 2piarrow_forward
- What type of quantum mechanical problems can be solved using the time-independent Schrödinger equation (TISE)? h^2 dw(x) dx2 + U (x) y (x) = Eµ (x) 2m Any problem where the potential U(x) has no time dependence. O Any quantum mechanical problem can be solved Only problems that have a constant potential U (x) = Uo Any problem where the energy values E are positive O Any problem where the energy values E are negativearrow_forward2arrow_forwardAn electron has a wavefunction ψ(x)=Ce-|x|/x0 where x0 is a constant and C=1/√x0 for normalization. For this case, obtain expressions for a. ⟨x⟩ and Δx in terms of x0. b. Also calculate the probability that the electron will be found within a standard deviation of its average position, that is, in the range ⟨x⟩-∆x to ⟨x⟩+∆x, and show that this is independent of x0.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning