Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 13P
(a)
To determine
The lowest possible energy of proton.
(b)
To determine
The lowest possible energy of electron.
(c)
To determine
The reason for the large difference in the results of (a) and (b).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A proton is confined to moving in a one-dimensional box of width 0.200 nm.
(a) Find the lowest possible energy of the proton.
(b) What is the lowest possible energy of an electron confined to the same box?
(c) How do you account for the large difference in your results for (a) and (b)?
A particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following.
(a) What is the wavelength (in m) of the wave function for the particle?
m
(b) What is its ground-state energy (in eV)?
eV
(c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box
is the same as the ground-state energy found for the first box in part (b)?
m
(d) What would be the wavelength (in m) of the wave function for the particle in that case?
m
An electron is confined to a region of space of length 0.19 nm— comparable in size to an atom. What are the first three allowed energies of the electron?
Chapter 6 Solutions
Modern Physics
Ch. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.5 - Prob. 4ECh. 6.7 - Prob. 5ECh. 6.8 - Prob. 6ECh. 6 - Prob. 1QCh. 6 - Prob. 2QCh. 6 - Prob. 3QCh. 6 - Prob. 4QCh. 6 - Prob. 5Q
Ch. 6 - Prob. 6QCh. 6 - Prob. 7QCh. 6 - Prob. 8QCh. 6 - Prob. 1PCh. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 5PCh. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 21PCh. 6 - Prob. 24PCh. 6 - Prob. 25PCh. 6 - Prob. 26PCh. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 37PCh. 6 - Prob. 38P
Knowledge Booster
Similar questions
- What is the ground state energy (in eV) of an a -particle confined to a one-dimensional box the size of the uranium nucleus that has a radius of approximately 15.0 fm?arrow_forwardAn electron confined to a box has the ground state energy of 2.5 eV. What is the width of the box?arrow_forwardA grain of sand with mass 1.0 mg and kinetic energy 1.0 J is incident on a potential energy barrier with height 1.00000 J and width 2500 nm. How many grains of sand have to fall on this barrier before, on the average, one passes through?arrow_forward
- An electron confined to a box has an energy of 1.63 eV . Another electron confined to an identical box has an energy of 3.67 eV . What is the smallest possible length for those boxes? Express your answer with the appropriate units. L=arrow_forwardPhoton in a Dye Laser. An electron in a long, organic molecule used in a dye laser behaves approximately like a particle in a box with width 4.18 nm. What is the wavelength of the photon emitted when the electron undergoes a transition (a) from the first excited level to the ground level and (b) from the second excited level to the first excited level?arrow_forwardA particle of mass m is moving in an infinite 1D quantum well of width L. y,(x) = J? sinx. sin nAx L (a) How much energy must be given to the particle so it can transition from the ground state to the second excited state? (b) If the particle is in the first excited state, what is the probability of finding the particle between x = and x = ;? 2.arrow_forward
- A particle has the wavefunction: Ψ(r) = N.exp(-a.r), where "N" is normalization factor and "a" is a real number. a) Find an expression for N. b) Find the mean values <x>, <r>, <r^2>.arrow_forwardAn electron trapped in a one-dimensional infinitely deep potential well with a width of 250 pm is excited from the first excited state to the third excited state. What energy must the electron acquire for this quantum jump to occur? The electron then emits a photon and transitions to the ground state. Determine the wavelength and momentum of the emitted photon.arrow_forwardConsider a one-dimensional square potential well with a width of L and depth Vo. An electron is confined within this potential well. a) Calculate the energy levels of the electron in terms of L and Vo. b) Determine the wavelength of the electron associated with its lowest energy state (n=1). c) If the potential well has the width of L=5nm and Vo=10eV, calculate the energy of the electron in its lowest energy state.arrow_forward
- . An electron in a long organic molecule used in a dye laser behave approximately like a particle in a box with width 4.18 nm. (a) What is the λ of the proton emitted when the electron undergoes a transition from the first excited level to the ground level. (b) What is the λ of the proton emitted when electron undergoes a transition from the second excited level to the first excited level?arrow_forwardAn electron is trapped in a rectangular region of length x = 1.25 nm and width y = 2.76 nm. What isthe minimum value that might be measured for its kinetic energy?arrow_forwardAn electron is moving past the square well shown in Fig. . The electron has energy E = 3U0 . What is the ratio of the de Broglie wavelength of the electron in the region x 7 L to the wavelength for 0 6 x 6 L?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning