Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 28P
(a)
To determine
The classical probability density that describes the particle in an infinite well.
(b)
To determine
The classical average
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The probability of finding a particle in differential region dx is:
O W(x,t) * W(x,t)
W(x,t) / W(x,t)*
W(x,t)*/ W(x,t)
W(x,t) + W(x,t)*
Let X be a random variable whose density is given by the formulaf(x) = cx2 if x ∈ (0, 2) 0 if otherwise.(a) Find c.(b) Let Y be the integer part of X, i.e., Y = 0 if 0 ≤ X < 1 and Y = 1 if 1 ≤ X < 2. Let Z be the fractional part of X, i.e., Z = X −Y . Find the correlation between Y and Z.
Problem 1. Using the WKB approximation, calculate the energy eigenvalues En of a quantum-
mechanical particle with mass m and potential energy V (x) = V₁ (x/x)*, where V > 0, Express
En as a function of n; determine the dimensionless numeric coefficient that emerges in this
expression.
Chapter 6 Solutions
Modern Physics
Ch. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.5 - Prob. 4ECh. 6.7 - Prob. 5ECh. 6.8 - Prob. 6ECh. 6 - Prob. 1QCh. 6 - Prob. 2QCh. 6 - Prob. 3QCh. 6 - Prob. 4QCh. 6 - Prob. 5Q
Ch. 6 - Prob. 6QCh. 6 - Prob. 7QCh. 6 - Prob. 8QCh. 6 - Prob. 1PCh. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 5PCh. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 21PCh. 6 - Prob. 24PCh. 6 - Prob. 25PCh. 6 - Prob. 26PCh. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 37PCh. 6 - Prob. 38P
Knowledge Booster
Similar questions
- This question has to do with binary star systems, where 'i' is the angle of inclination of the system. Calculate the mean expectation value of the factor sin3i, i.e., the mean value it would have among an ensemble of binaries with random inclinations. Find the masses of the two stars, if sin3i has its mean value. Hint: In spherical coordinates, (theta, phi), integrate over the solid angle of a sphere where the observer is in the direction of the z-axis, with each solid angle element weighted by sin3(theta). v1=100 km/s v2=200 km/s Orbital period=2 days M1=5.74e33 g M2=2.87e33 garrow_forwardQuestion 1: Determine the bandwidth ( wgw ) and sampling time interval for the following systems.(Hint: Assume that 27 = 6 ) 1 a)Obtain the bandwidth ( way ) for the system with G, (s): transfer function. T,s+1 b)Determine the appropriate sampling time interval for the system with G, (s 1 transfer function. T,s+1 c)Obtain the bandwidth ( waw ) for the system with G,(s)= T;Þ;s+1 T,s+1 transfer function. d)Determine the appropriate sampling time interval for the system with G, T,B,s+1 transfer function. T,s+1 e) Obtain the appropriate sampling time interval for the following system. 1 G(s)= s+1 2s +1 5s +1arrow_forwardV7arrow_forward
- Consider a potential barrier represented as follows: U(x) = 0 if x < 0; εx if 0 < x < a; 0 if x > a Determine the transmission coefficient as a function of particle energy.arrow_forwardAccording to the equipartition theorem of classical thermodynamics, all ocillators in the cavity have the same mean energy, irrespective of their frequencies. With this in view, prove the following relation: 00 EE¬E/kT dE = = kT . S" e-E/KT dEarrow_forwardProblem 2: Random variable X has the following pmf and Y = e\. Calculate E[Y] directly (without first finding the pmf of Y). (0.1 if x = 0 0.5 if x = 1 Px (x) = 0.4 if x = 3 otherwisearrow_forward
- Consider p is the density function of an ensemble. This system is said to be in stationary state if, ÔT (a) ôt 0= (b) ôt (c) %3D (d) ôtarrow_forward(d) Prove that for a classical particle moving from left to right in a box with constant speed v, the average position = (1/T) ff x(t) dt = L/2, where T L/v is the time taken to move from left to right. And = : (1/T) S²x² (t) dt L²/3. Hint: Only consider a particle moving from left x = 0 to right x = L = and do not include the bouncing motion from right to left. The results for left to right are independent of the sense of motion and therefore the same results apply to all the bounces, so that we can prove it for just one sense of motion. Thus, the classical result is obtained from the Quantum solution when n >> 1. That is, for large energies compared to the minimum energy of the wave-particle system. This is usually referred to as the Classical Limit for Large Quantum Numbers.arrow_forwardConsider a one-dimensional particle which is confined within the region 0≤x≤a and whose wave function is (x, t) = sin (x/a) exp(-iwt). (D) v sv (a) Find the potential V(x). (b) Calculate the probability of finding the particle in the interval a/4 ≤x≤3a/4.arrow_forward
- A particle of mass m moves inside a potential energy landscape U(z) = X|2| along the z axis. Part (a) What are the units of the constant X? Part (b) If the particle has kinetic energy me at the origin at z = 0, where are the classical turning points of the motion?arrow_forwardThe time-independent wave function of a particle of mass m moving in a potential V =dxisma?a being a constant.Find the energy of the system.arrow_forwardConsider a particle of mass m moving in a 2-dimensional rectangular box of sides La and Ly, with Le 2Ly. If we use the symbols E, to denote the energy of the ground state of the system, Ee1 the energy of the first excited state, Ee2 the energy of the second excited state, and Ee3 the energy of the third excited state, what are the numerical values of the ratios Ee1/Eg, Ee2/Eg, and Ee3/E,?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax