Principles of Modern Chemistry
8th Edition
ISBN: 9781305079113
Author: David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 25P
Following the pattern of Figure 6.21, work out the correlation diagram for the CN molecule, showing the relative energy levels of the atoms and the bonding and anti-bonding orbitals of the molecule. Indicate the occupation of the MOs with arrows. State the order of the bond and comment on the magnetic properties of CN.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the References to access important values if needed for this question.
Consider the fluorine molecule and the F," molecular ion:
(a) Give the bond order of each species. If a fraction is needed, use a decimal number.
Bond order F2
Bond order F2=
(b) Predict which species should be paramagnetic.
Is F2 paramagnetic? |
Is F2 paramagnetic?
(c) Predict which species has the greater bond dissociation energy.
The species with the largest bond dissociation energy is:
a. F2
b. F2
Please don't provide handwritten solution ...
Please don't provide handwritten solution ...
Chapter 6 Solutions
Principles of Modern Chemistry
Ch. 6 - Determine the number of nodes along the...Ch. 6 - Determine the number of nodes along the...Ch. 6 - Sketch the shape of each of the molecular...Ch. 6 - Sketch the shape of each of the molecular...Ch. 6 - Compare the electron density in the 1g and 1u*...Ch. 6 - Explain why 1g is the ground state for H2+ . By...Ch. 6 - Prob. 7PCh. 6 - Predict the ground electronic state of the He22+...Ch. 6 - Prob. 9PCh. 6 - Prob. 10P
Ch. 6 - Without consulting tables of data, predict which...Ch. 6 - Without consulting tables of data, predict which...Ch. 6 - Without consulting tables of data, on the same...Ch. 6 - Without consulting tables of data, on the same...Ch. 6 - Suppose we supply enough energy to H2 to remove...Ch. 6 - Suppose we supply enough energy to He2+ to remove...Ch. 6 - Prob. 17PCh. 6 - When one electron is added to an oxygen molecule,...Ch. 6 - Predict the valence electron configuration and the...Ch. 6 - Predict the valence electron configuration and the...Ch. 6 - Prob. 21PCh. 6 - For each of the following valence electron...Ch. 6 - For each of the electron configurations in Problem...Ch. 6 - For each of the electron configurations in Problem...Ch. 6 - Following the pattern of Figure 6.21, work out the...Ch. 6 - Following the pattern of Figure 6.21, work out the...Ch. 6 - The bond length of the transient diatomic molecule...Ch. 6 - The compound nitrogen oxide (NO) forms when the...Ch. 6 - What would be the electron configuration for a HeH...Ch. 6 - The molecular ion HeH+ has an equilibrium bond...Ch. 6 - Prob. 31PCh. 6 - Predict the ground state electronic configuration...Ch. 6 - The bond dissociation energies for the species NO,...Ch. 6 - The ionization energy of CO is greater than that...Ch. 6 - Photoelectron spectra were acquired from a sample...Ch. 6 - Photoelectron spectra were acquired from a sample...Ch. 6 - Prob. 37PCh. 6 - From the n=0 peaks in the photoelectron spectrum...Ch. 6 - The photoelectron spectrum of HBr has two main...Ch. 6 - The photoelectron spectrum of CO has four major...Ch. 6 - Write simple valence bond wave functions for the...Ch. 6 - Write simple valence bond wave functions for the...Ch. 6 - Both the simple VB model and the LCAO method...Ch. 6 - Both the simple VB model and the LCAO method...Ch. 6 - Write simple valence bond wave functions for...Ch. 6 - Write simple valence bond wave functions for...Ch. 6 - Write simple valence bond wave functions for the...Ch. 6 - Write simple valence bond wave functions for the...Ch. 6 - Formulate a localized bond picture for the amide...Ch. 6 - Formulate a localized bond picture for the...Ch. 6 - Prob. 51PCh. 6 - Draw a Lewis electron dot diagram for each of the...Ch. 6 - Describe the hybrid orbitals on the chlorine atom...Ch. 6 - Describe the hybrid orbitals on the chlorine atom...Ch. 6 - The sodium salt of the unfamiliar orthonitrate ion...Ch. 6 - Describe the hybrid orbitals used by the carbon...Ch. 6 - Describe the bonding in the bent molecule NF2 ....Ch. 6 - Describe the bonding in the bent molecule OF2 ....Ch. 6 - The azide ion (N3) is a weakly bound molecular...Ch. 6 - Formulate the MO structure of (NO2+) for localized...Ch. 6 - Discuss the nature of the bonding in the nitrite...Ch. 6 - Discuss the nature of the bonding in the nitrate...Ch. 6 - The pyridine molecule (C5H5N) is obtained by...Ch. 6 - For each of the following molecules, construct the...Ch. 6 - (a) Sketch the occupied MOs of the valence shell...Ch. 6 - Calcium carbide (CaC2) is an intermediate in the...Ch. 6 - The B2 molecule is paramagnetic; show how this...Ch. 6 - The Be2 molecule has been detected experimentally....Ch. 6 - Prob. 69APCh. 6 - The molecular ion HeH+ has an equilibrium bond...Ch. 6 - The MO of the ground state of a heteronuclear...Ch. 6 - The stable molecular ion H3+ is triangular, with...Ch. 6 - According to recent spectroscopic results,...Ch. 6 - trans-tetrazene (N4H4) consists of a chain of four...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider a ring system made up of 8 atoms (each one contributing a p atomic orbital to make 8 pi molecular orbitals). If the system is filled with 6 orbitals containing single, electrons, there will 6 orbitals containing pairs of electrons and 1 unpaired electrons. Hint: Use a Frost Circle. Use numbers rather than text for your answers.arrow_forward2. Draw MO energy level diagrams for each of the following diatomic molecules are molecular ions. All contributing atomic orbitals and the resulting molecular orbitals must be labeled properly showing the electrons (as arrows) in the atomic orbitals and in the molecular orbitals. All orbitals should be drawn to show their relative energy relationships. Calculate the bond order for each and label each as either diamagnetic or paramagnetic. (a) BO‒ (b) CN (c) FCl (d) Cl2‒arrow_forwardPlease don't provide handwritten solution .....arrow_forward
- 44. The molecule H3* has long been speculated to exist. The interest here is that the addition of the smallest bit of nuclear matter, a proton, now introduces additional nuclear repulsion over the H₂ problem. The issue was whether electron distributions could lead to a stable configuration. a) Draw what you think would be the most stable structure for H3* and show all the Coulombic terms (write out the potential needed for the corresponding Schroedinger equation). b) Draw what you think is the least stable configure of the 3 protons and 2 electrons. c) It is found that the structure involves the rotation of one proton around the other two, and interchange of which proton is rotating. Offer a potential explanation (think tunneling).arrow_forwardPlease don't provide handwritten solution ...arrow_forward1. MO diagrams for ions: Molecule orbital diagrams can also be used to predict the bond orders of not-so- common molecules and ions. (a) On the blank MO diagrams below, draw complete molecular orbital energy-level diagrams for O₂ and O₂. Predict the bonds orders of these molecules. (b) Repeat the exercise above for N₂ and N₂". (c) Use valence bond theory to draw Lewis structures of the four ions above. What bond order do these Lewis structures suggest? Compare these bond orders with the predictions of MO theory and discuss the similarities and differences. 1113 2p 12 2s 1 1 1 2p 14 2s 2p 2p Aarrow_forward
- 4. Molecular Orbital Theory Let's construct an MO diagram for KrBr*, the krypton bromide cation. Let's focus only on the n=4 valence shell in for both species. a) Which of the two atoms, Kr or Br, has a 4p electrons that are lower in energy? Justify your answer in terms of periodic trends. Also provide experimental evidence for your answer in terms of ionization energies (available online). b) Based on part (a), draw an MO diagram for KrBr*, reflecting the appropriate relative energies of the Kr/Br valence electrons. Connect the orbitals that mix/split with dashed lines. c) Populate the MO diagram with the appropriate number of valence electrons. What is the expected bond order?arrow_forwardGive answer all questions with explanation pleasearrow_forward(b) Construct a valence MO diagram for the pi bonding in the trigonal planar molecule BF3; to simplify the problem, you should only use the 2pz orbitals on the F atoms.arrow_forward
- Second-row diatomics For molecules containing atoms with electrons in p orbitals, energy-level diagrams become more complex. Core electrons are usually omitted from MO energy level diagrams. Discuss with your group or the class the following: (a) (b) Why are core electrons usually omitted? For the second-row diatomics what is the lowest MO formed from valence shell orbitals? Describe how molecular orbitals are formed from atomic orbitals. Would you expect them to be higher or lower in energy than a (sigma) molecular orbitals? (c) As the nuclear charge increases, the energies of all orbitals are lowered, as shown in the figure below for homonuclear diatomics. Why does this happen? 620x Li₂ Bez 1 0₂ F₂ Ne₂ p #p 29 620 625 #20 Note: For molecules smaller than 02, the 2p orbital is higher in energy than the #2p orbitals. An explanation of this can be found on your Moodle course page for those of you who are interested...arrow_forwardNonearrow_forward3. Relative Atomic Sizes. Rank the following in increasing order of atomic size (atomic radius) by numbering them in order from 1 through 6, with 1 being the smallest and 6 being the largest. Se Cr K Br Са Krarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Linear Combination of Atomic Orbitals LCAO; Author: Edmerls;https://www.youtube.com/watch?v=nq1zwrAIr4c;License: Standard YouTube License, CC-BY
Quantum Molecular Orbital Theory (PChem Lecture: LCAO and gerade ungerade orbitals); Author: Prof Melko;https://www.youtube.com/watch?v=l59CGEstSGU;License: Standard YouTube License, CC-BY