
Concept explainers
Griffith, in his 1928 experiments, demonstrated that bacterial strains could be genetically transformed. The evidence that DNA was the transforming principle responsible for this phenomenon came later. What was the key experiment that Avery, MacCleod, and McCarty performed to prove that DNA was responsible for the genetic change from rough cells into smooth cells?

a.
To determine:
The phrase that describes “transformation” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
transformation is one of the mechanisms by which bacteria transfer genes from one strain to another. It occurs when DNA from a donor is added to the bacterial growth medium and is then taken up from the medium by the recipient. The recipient cell is called a transformant.
Answer to Problem 1P
Correct answer:
Transformation: Griffith experiment
Explanation of Solution
Griffith experiment shows that the transformation is the process of alteration of cellular genetics. This can be done by the incorporation of the exogenous material into the genetic makeup of an organism.

b.
To determine:
The phrase that describes “bacteriophage” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Bacteriophage a virus for which the natural host is a bacterial cell. They are known as bacteria-eaters.
Answer to Problem 1P
Correct answer:
Bacteriophage: A virus that infects bacteria
Explanation of Solution
A bacteriophage is a type of virus that infects bacteria. This virus is made up of nucleic acid molecule which is surrounded by a protein layer called capsid.

c.
To determine:
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
pyrimidines are a chemical group that includes the nitrogenous bases cytosine, thymine, and uracil.
Answer to Problem 1P
Correct answer:
Pyrimidine: A nitrogenous base containing a single ring
Explanation of Solution
Pyrimidine is a nitrogenous base that consists of two nitrogen and four carbons. It is a single ring structure. It catalyzes site-specific recombination.

d.
To determine:
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Deoxyribose is a molecule similar to ribose, except that the 2′ carbon has a hydrogen rather than a hydroxyl group.
Answer to Problem 1P
Correct answer:
Deoxyribose: The sugar within the nucleotide subunits of DNA
Explanation of Solution
Deoxyribose is the pentose sugar that forms the backbone of DNA. This sugar is derived from ribose sugar by loss of oxygen molecule.

e.
To determine:
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Hydrogen bonds are weak electrostatic bonds that result in a partial sharing of hydrogen atoms between reacting groups.
Answer to Problem 1P
Correct answer:
Hydrogen bonds: Noncovalent bonds that hold the two strands of the double helix together
Explanation of Solution
Hydrogen bond is an electrostatic bond that occur between a hydrogen atom and a more electronegative atom. These bonds are responsible for holding the strands of DNA double helix together.

f.
To determine:
The phrase that describes “complementary bases” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Complementarity is the property of DNA whereby the base sequences of the two strands in the double helix are reverse complements of one another; A is opposite T, and G is opposite C.
Answer to Problem 1P
Correct answer:
Complementary bases: Two nitrogenous bases that can pair via hydrogen bonds
Explanation of Solution
The complementary bases are the two base pairs that are connected with the help of hydrogen bonds in the DNA strands.

g.
To determine:
The phrase that describes “origin” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
The model of DNA replication was proposed by the scientists Watson and Crick. Unwinding of the double helix enables each of the two parental strands to function as a template for the synthesis of a new strand by the mechanism of complementary base pairing. As a result a single double helix is converted into two identical daughter double helixes
Answer to Problem 1P
Correct answer:
Origin: A short sequence of bases where unwinding of the double helix for replication begins
Explanation of Solution
Origin is a sequence of bases from where the DNA double helix unwinds. It is the point from where process of replication is initiated.

h.
To determine:
The phrase that describes “okazaki fragments” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Okazaki fragments are formed during DNA replication. They are small fragments of about 1000 bases that are joined after synthesis to form the lagging strand.
Answer to Problem 1P
Correct answer:
Okazaki fragments: Short DNA fragments formed by discontinuous replication of one of the strands.
Explanation of Solution
Okazaki fragments are the short stretch of DNA fragments which are formed by the discontinuous replication of one DNA strand.

i.
To determine:
The phrase that describes “purine” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Purines are a chemical group that includes the nitrogenous bases adenine and guanine.
Answer to Problem 1P
Correct answer:
Purine: A nitrogenous base containing a double ring
Explanation of Solution
The nitrogenous bases that contains double ring are purines. Adenine and guanine are the two types of purines present in double stranded DNA molecule.

j.
To determine:
The phrase that describes “topoisomerases” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
DNA topoisomerases are a group of enzymes that assist relax supercoiling of the DNA helix by nicking one or both strands to allow the strands to rotate relative to each other.
Answer to Problem 1P
Correct answer:
Topoisomerases: Enzymes involved in controlling DNA supercoiling
Explanation of Solution
Topoisomerases are the group of enzymes which are involved in the over winding or under winding of the DNA. It controls the super coiling of double stranded DNA molecule.

k.
To determine:
The phrase that describes “semiconservative replication” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
semiconservative replication is a mechanism of DNA replication in which each single strand of the parent double helix functions as template for synthesis of its complement. As a result two daughter double helixes that each contain one of the original DNA strands intact (conserved) and one completely new strand is produced.
Answer to Problem 1P
Correct answer:
Semiconservative replication: Meselson and Stahl experiment
Explanation of Solution
Meselson and Stahl experiment describe the semi conservative replication in which both the daughter strands have a copy of parent strand.

l.
To determine:
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
During replication, the DNA strand replicated discontinuously, 5′ to 3′ away from the Y-shaped replication fork, as small Okazaki fragments that are ultimately joined into a continuous strand.
Answer to Problem 1P
Correct answer:
Lagging strand: The strand that is synthesized discontinuously during replication
Explanation of Solution
Lagging strand is the type of strand that is synthesized discontinuously. It consist of short DNA fragments that are synthesized during the process of DNA replication.

m.
To determine:
The phrase that describes “telomeres” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Telomeres are specialized terminal structures on eukaryotic chromosomes that ensure the regulation and accurate replication of the two ends of each linear chromosome.
Answer to Problem 1P
Correct answer:
Telomeres: Structures at ends of eukaryotic chromosomes
Explanation of Solution
Telomeres are the structures which are present at the end of the chromosome. These are the cap like structures that protect the chromosome.

n.
To determine:
The phrase that describes “recombinase” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Recombinase is an enzyme that carries out site-specific recombination
Answer to Problem 1P
Correct answer:
Recombinase: Catalyzes site-specific recombination
Explanation of Solution
The recombinase enzyme carries out site-specific recombination between two DNA recognition sites. It is a member of integrase family.
Want to see more full solutions like this?
Chapter 6 Solutions
Genetics: From Genes to Genomes
- There is currently a H5N1 cattle outbreak in North America. According to the CDC on Feb 26*: "A multistate outbreak of HPAI A(H5N1) bird flu in dairy cows was first reported on March 25, 2024. This is the first time that these bird flu viruses had been found in cows. In the United States, since 2022, USDA has reported HPAI A(H5N1) virus detections in more than 200 mammals." List and describe two mechanisms that could lead to this H5N1 influenza strain evolving to spread in human: Mechanisms 1: Mechanisms 2: For the mutations to results in a human epidered they would need to change how the virus interacts with the human host. In the case of mutations that may promote an epidemic, provide an example for: a protein that might incur a mutation: how the mutation would change interactions with cells in the respiratory tract (name the receptor on human cells) List two phenotypic consequence from this mutation that would increase human riskarrow_forwardYou have a bacterial strain with the CMU operon: a) As shown in the image below, the cmu operon encodes a peptide (Pep1), as well as a kinase and regulator corresponding to a two-component system. The cmu operon is activated when Pep 1 is added to the growth media. Pep1 is a peptide that when added extracellularly leads to activation of the Cmu operon. Pep1 cmu-kinase cmu-regulator You also have these genetic components in other strains: b) An alternative sigma factor, with a promoter activated by the cmu-regulator, that control a series of multiple operons that together encode a transformasome (cellular machinery for transformation). c) the gene cl (a repressor). d) the promoter X, which includes a cl binding site (and in the absence of cl is active). e) the gene gp (encoding a green fluorescence protein). Using the cmu operon as a starting point, and assuming you can perform cloning to rearrange any of these genomic features, how would you use one or more of these to modify the…arrow_forwardYou have identified a new species of a Gram-positive bacteria. You would like to screen their genome for all proteins that are covalently linked to the cell wall. You have annotated the genome, so that you identified all the promoters, operons, and genes sequences within the operons. Using these features, what would you screen for to identify a set of candidates for proteins covalently linked to the bacterial cell wall.arrow_forward
- Below is a diagram from a genomic locus of a bacterial genome. Each arrow represents a coding region, and the arrowheads indicate its orientation in the genome. The numbers are randomly assigned. Draw the following features on the diagram, and explain your rationale for each feature: 10 12 合會會會會長 6 a) Expected transcriptions, based on known properties of bacterial genes and operons. How many proteins are encoded in each of the transcripts? b) Location of promoters (include rationale) c) Location of transcriptional terminators (include rationale) d) Locations of Shine-Dalgarno sequences (include rationale)arrow_forwardSample excuse letter in school class for the reasons of headaches and dysmenorrhea caused by menstrual cyclearrow_forwardHow do the muscles on the foot work to balance on an ice skate, specifically the triangle of balance and how does it change when balancing on an ice skate? (Refer to anatomy, be specific)arrow_forward
- Which of the following is NOT an example of passive immunization? A. Administration of tetanus toxoid B. Administration of hepatitis B immunoglobulin C. Administration of rabies immunoglobulin D. Transfer of antibodies via plasma therapyarrow_forwardTranscription and Translation 1. What is the main function of transcription and translation? (2 marks) 2. How is transcription different in eukaryotic and prokaryotic cells? (2 marks) 3. Explain the difference between pre-mRNA and post-transcript mRNA. (2 marks) 4. What is the function of the following: (4 marks) i. the cap ii. spliceosome iii. Poly A tail iv. termination sequence 5. What are advantages to the wobble feature of the genetic code? (2 marks) 6. Explain the difference between the: (3 marks) i. A site & P site ii. codon & anticodon iii. gene expression and gene regulation 7. Explain how the stop codon allows for termination. (1 mark) 8. In your own words, summarize the process of translation. (2 marks)arrow_forwardIn this activity you will research performance enhancers that affect the endocrine system or nervous system. You will submit a 1 page paper on one performance enhancer of your choice. Be sure to include: the specific reason for use the alleged results on improving performance how it works how it affect homeostasis and improves performance any side-effects of this substancearrow_forward
- Neurons and Reflexes 1. Describe the function of the: a) dendrite b) axon c) cell body d) myelin sheath e) nodes of Ranvier f) Schwann cells g) motor neuron, interneuron and sensory neuron 2. List some simple reflexes. Explain why babies are born with simple reflexes. What are they and why are they necessary. 3. Explain why you only feel pain after a few seconds when you touch something very hot but you have already pulled your hand away. 4. What part of the brain receives sensory information? What part of the brain directs you to move your hand away? 5. In your own words describe how the axon fires.arrow_forwardMutations Here is your template DNA strand: CTT TTA TAG TAG ATA CCA CAA AGG 1. Write out the complementary mRNA that matches the DNA above. 2. Write the anticodons and the amino acid sequence. 3. Change the nucleotide in position #15 to C. 4. What type of mutation is this? 5. Repeat steps 1 & 2. 6. How has this change affected the amino acid sequence? 7. Now remove nucleotides 13 through 15. 8. Repeat steps 1 & 2. 9. What type of mutation is this? 0. Do all mutations result in a change in the amino acid sequence? 1. Are all mutations considered bad? 2. The above sequence codes for a genetic disorder called cystic fibrosis (CF). 3. When A is changed to G in position #15, the person does not have CF. When T is changed to C in position #14, the person has the disorder. How could this have originated?arrow_forwardhoose a scientist(s) and research their contribution to our derstanding of DNA structure or replication. Write a one page port and include: their research where they studied and the time period in which they worked their experiments and results the contribution to our understanding of DNA cientists Watson & Crickarrow_forward
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeHuman Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Biology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning





