Concept explainers
Griffith, in his 1928 experiments, demonstrated that bacterial strains could be genetically transformed. The evidence that DNA was the transforming principle responsible for this phenomenon came later. What was the key experiment that Avery, MacCleod, and McCarty performed to prove that DNA was responsible for the genetic change from rough cells into smooth cells?
a.
To determine:
The phrase that describes “transformation” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
transformation is one of the mechanisms by which bacteria transfer genes from one strain to another. It occurs when DNA from a donor is added to the bacterial growth medium and is then taken up from the medium by the recipient. The recipient cell is called a transformant.
Answer to Problem 1P
Correct answer:
Transformation: Griffith experiment
Explanation of Solution
Griffith experiment shows that the transformation is the process of alteration of cellular genetics. This can be done by the incorporation of the exogenous material into the genetic makeup of an organism.
b.
To determine:
The phrase that describes “bacteriophage” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Bacteriophage a virus for which the natural host is a bacterial cell. They are known as bacteria-eaters.
Answer to Problem 1P
Correct answer:
Bacteriophage: A virus that infects bacteria
Explanation of Solution
A bacteriophage is a type of virus that infects bacteria. This virus is made up of nucleic acid molecule which is surrounded by a protein layer called capsid.
c.
To determine:
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
pyrimidines are a chemical group that includes the nitrogenous bases cytosine, thymine, and uracil.
Answer to Problem 1P
Correct answer:
Pyrimidine: A nitrogenous base containing a single ring
Explanation of Solution
Pyrimidine is a nitrogenous base that consists of two nitrogen and four carbons. It is a single ring structure. It catalyzes site-specific recombination.
d.
To determine:
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Deoxyribose is a molecule similar to ribose, except that the 2′ carbon has a hydrogen rather than a hydroxyl group.
Answer to Problem 1P
Correct answer:
Deoxyribose: The sugar within the nucleotide subunits of DNA
Explanation of Solution
Deoxyribose is the pentose sugar that forms the backbone of DNA. This sugar is derived from ribose sugar by loss of oxygen molecule.
e.
To determine:
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Hydrogen bonds are weak electrostatic bonds that result in a partial sharing of hydrogen atoms between reacting groups.
Answer to Problem 1P
Correct answer:
Hydrogen bonds: Noncovalent bonds that hold the two strands of the double helix together
Explanation of Solution
Hydrogen bond is an electrostatic bond that occur between a hydrogen atom and a more electronegative atom. These bonds are responsible for holding the strands of DNA double helix together.
f.
To determine:
The phrase that describes “complementary bases” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Complementarity is the property of DNA whereby the base sequences of the two strands in the double helix are reverse complements of one another; A is opposite T, and G is opposite C.
Answer to Problem 1P
Correct answer:
Complementary bases: Two nitrogenous bases that can pair via hydrogen bonds
Explanation of Solution
The complementary bases are the two base pairs that are connected with the help of hydrogen bonds in the DNA strands.
g.
To determine:
The phrase that describes “origin” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
The model of DNA replication was proposed by the scientists Watson and Crick. Unwinding of the double helix enables each of the two parental strands to function as a template for the synthesis of a new strand by the mechanism of complementary base pairing. As a result a single double helix is converted into two identical daughter double helixes
Answer to Problem 1P
Correct answer:
Origin: A short sequence of bases where unwinding of the double helix for replication begins
Explanation of Solution
Origin is a sequence of bases from where the DNA double helix unwinds. It is the point from where process of replication is initiated.
h.
To determine:
The phrase that describes “okazaki fragments” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Okazaki fragments are formed during DNA replication. They are small fragments of about 1000 bases that are joined after synthesis to form the lagging strand.
Answer to Problem 1P
Correct answer:
Okazaki fragments: Short DNA fragments formed by discontinuous replication of one of the strands.
Explanation of Solution
Okazaki fragments are the short stretch of DNA fragments which are formed by the discontinuous replication of one DNA strand.
i.
To determine:
The phrase that describes “purine” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Purines are a chemical group that includes the nitrogenous bases adenine and guanine.
Answer to Problem 1P
Correct answer:
Purine: A nitrogenous base containing a double ring
Explanation of Solution
The nitrogenous bases that contains double ring are purines. Adenine and guanine are the two types of purines present in double stranded DNA molecule.
j.
To determine:
The phrase that describes “topoisomerases” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
DNA topoisomerases are a group of enzymes that assist relax supercoiling of the DNA helix by nicking one or both strands to allow the strands to rotate relative to each other.
Answer to Problem 1P
Correct answer:
Topoisomerases: Enzymes involved in controlling DNA supercoiling
Explanation of Solution
Topoisomerases are the group of enzymes which are involved in the over winding or under winding of the DNA. It controls the super coiling of double stranded DNA molecule.
k.
To determine:
The phrase that describes “semiconservative replication” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
semiconservative replication is a mechanism of DNA replication in which each single strand of the parent double helix functions as template for synthesis of its complement. As a result two daughter double helixes that each contain one of the original DNA strands intact (conserved) and one completely new strand is produced.
Answer to Problem 1P
Correct answer:
Semiconservative replication: Meselson and Stahl experiment
Explanation of Solution
Meselson and Stahl experiment describe the semi conservative replication in which both the daughter strands have a copy of parent strand.
l.
To determine:
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
During replication, the DNA strand replicated discontinuously, 5′ to 3′ away from the Y-shaped replication fork, as small Okazaki fragments that are ultimately joined into a continuous strand.
Answer to Problem 1P
Correct answer:
Lagging strand: The strand that is synthesized discontinuously during replication
Explanation of Solution
Lagging strand is the type of strand that is synthesized discontinuously. It consist of short DNA fragments that are synthesized during the process of DNA replication.
m.
To determine:
The phrase that describes “telomeres” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Telomeres are specialized terminal structures on eukaryotic chromosomes that ensure the regulation and accurate replication of the two ends of each linear chromosome.
Answer to Problem 1P
Correct answer:
Telomeres: Structures at ends of eukaryotic chromosomes
Explanation of Solution
Telomeres are the structures which are present at the end of the chromosome. These are the cap like structures that protect the chromosome.
n.
To determine:
The phrase that describes “recombinase” among the options given below.
- the strand that is synthesized discontinuously during replication
- the sugar within the nucleotide subunits of DNA
- a nitrogenous base containing a double ring
- noncovalent bonds that hold the two strands of the double helix together
- Meselson and Stahl experiment
- Griffith experiment
- structures at ends of eukaryotic chromosomes
- two nitrogenous bases that can pair via hydrogen bonds
- catalyzes site-specific recombination
- a nitrogenous base containing a single ring
- a short sequence of bases w here unw inding of the double helix for replication begins
- a virus that infects bacteria
- short DNA fragments formed by discontinuous replication of one of the strands
- enzymes involved in controlling DNA supercoiling
Introduction:
Recombinase is an enzyme that carries out site-specific recombination
Answer to Problem 1P
Correct answer:
Recombinase: Catalyzes site-specific recombination
Explanation of Solution
The recombinase enzyme carries out site-specific recombination between two DNA recognition sites. It is a member of integrase family.
Want to see more full solutions like this?
Chapter 6 Solutions
Genetics: From Genes to Genomes
- Luke recently moved to a new apartment and wants to grow houseplants but isn't sure which room will be the best fit for them. Apply your knowledge of the scientific method to recommend a strategy for Luke to follow when determining the ideal location for houseplants in his new apartment.arrow_forwardA farmer has noticed that his soybean plants produce more beans in some years than others. He claims to always apply the same amount of fertilizer to the plants, but he suspects the difference in crop yield may have something to do with the amount of water the crops receive. The farmer has observed that the soybeans on his farm usually receive between 0 to 0.5 inches of water per day, but he is unsure of the optimal average daily amount of water with which to irrigate. 1. State a question that addresses the farmer’s problem 2. Conduct online research on “soybean crop irrigation" and record a brief summary of the findings 3. Construct a testable hypothesis and record i 4. Design an experiment to test the hypothesis and describe the procedures, variables, and data to be collected 5. What is the purpose of a control group in an experiment? What would the control groups be for each of your designed experiments in this exercise? 6. Describe the data that would be recorded in each of the…arrow_forwardA farmer has noticed that his soybean plants produce more beans in some years than others. He claims to always apply the same amount of fertilizer to the plants, but he suspects the difference in crop yield may have something to do with the amount of water the crops receive. The farmer has observed that the soybeans on his farm usually receive between 0 to 0.5 inches of water per day, but he is unsure of the optimal average daily amount of water with which to irrigate. 1. State a question that addresses the farmer’s problem 2. Conduct online research on “soybean crop irrigation" and record a brief summary of the findings 3. Construct a testable hypothesis and record i 4. Design an experiment to test the hypothesis and describe the procedures, variables, and data to be collectedarrow_forward
- A pharmaceutical company has developed a new weight loss drug for adults. Preliminary tests show that the drug seems to be fairly effective in about 75% of test subjects. The drug company thinks that the drug might be most effective in overweight individuals, but they are unsure to whom they should market the product. Use the scientific method to address the pharmaceutical company’s needs: State a research question that addresses the pharmaceutical company's problem Conduct online research on “Body Mass Index” categories and record a brief summary Construct a testable hypothesis and record in Design an experiment to test the hypothesis and describe the procedures, variables, and data to be collected What is the purpose of a control group in an experiment? What would the control groups be for each of your designed experiments in this exercise? Describe the data that would be recorded in each of the experiments you designed. Would it be classified as quantitative or…arrow_forwardPatients with multiple sclerosis frequently suffer from blurred vision. Drug X was developed to reduce blurred vision in healthy patients, but the effectiveness had not been tested on those suffering from multiple sclerosis. A study was conducted to determine if Drug X is effective at reducing blurry vision in multiple sclerosis patients. To be considered effective, a drug must reduce blurred vision by more than 30% in patients. Researchers predicted that a 20 mg dose of the drug would be effective for treating blurred vision in multiple sclerosis patients by reducing blurred vision by more than 30%. Drug X was administered to groups of multiple sclerosis patients at three doses (10 mg/day, 20 mg/day, 30 mg/day) for three weeks. A fourth group of patients was given a placebo containing no drug X for the same length of time. Vision clarity was measured for each patient before and after the three-week period using a standard vision test. The results were analyzed and graphed (See Figure…arrow_forwardSvp je voulais demander l aide pour mon exercicearrow_forward
- Imagine that you are a clinical geneticist. Your colleague is an oncologist who wants your help explaining the basics of genetics to their patient, who will be undergoing genetic testing in the coming weeks for possible acute myeloid leukemia (AML) induced by the radiation she had several years ago for breast cancer. Write a 1,050- to 1,225-word memo to your colleague. Include the following in your memo: An explanation of the molecular structure of DNA and RNA, highlighting both similarities and differences A description of the processes of transcription and translation An explanation of the differences between leading and lagging strands and how the DNA is replicated in each strand Reponses to the following common questions patients might ask about this type of genetic testing and genetic disorder: Does AML run in families? What genes are tested for?arrow_forwardRespond to the following in a minimum of 175 words: What are some potential consequences that could result if the processes of replication, transcription, and translation don’t function correctly? Provide an example of how you might explain these consequences in terms that patients might understand.arrow_forwardanswer questions 1-10arrow_forward
- Answer Question 1-9arrow_forwardEx: Mr. Mandarich wanted to see if the color of light shined on a planthad an effect on the number of leaves it had. He gathered a group ofthe same species of plants, gave them the same amount of water, anddid the test for the same amount of time. Only the color of light waschanged. IV:DV:Constants:Control Gr:arrow_forwardethical considerations in medical imagingarrow_forward
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeHuman Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Biology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning