a)
Interpretation: The total stream’s down flow rate has to be calculated.
Concept Introduction: Concentration of solution can be defined in terms of molarity as moles of solute to the volume of solution. The concentration of solution can be given by,
a)
Answer to Problem 140CP
The total flow rate of downstream from the stream is
Explanation of Solution
Given:
Record the given data
Upstream at which the stream rate flows =
Downstream at which the plant discharges=
Moles of
The stream flow rate in upwards and downwards direction of a manufacturing plant and mole of
To calculate the stream’s total flow rate
=
=
Total flow rate of the stream is
The total flow rate of the stream is calculated by summing up the values of upstream flow rate and the downstream flow rate. The total flow rate of the stream is
b)
Interpretation: the concentration of
Concept Introduction: Concentration of solution can be defined in terms of molarity as moles of solute to the volume of solution. The concentration of solution can be given by,
b)
Answer to Problem 140CP
Concentration of
Explanation of Solution
Given:
Record the given data
Moles of
Total flow rate of the plant =
Downstream at which the plant discharges water=
The stream flow rate in upwards and downwards direction of a manufacturing plant and mole of
To calculate the concentration of
Concentration of HCl downstream for the plant in ppm is 4.25 ppm
The concentration of HCl is calculated by plugging in the values of product of moles of HCl and downstream flow to the total flow rate of the plant. The concentration of HCl downstream for the plant in ppm is 4.25 ppm.
c)
Interpretation: The mass of
Concept Introduction: Concentration of solution can be defined in terms of molarity as moles of solute to the volume of solution. The concentration of solution can be given by,
c)
Answer to Problem 140CP
Mass of
Explanation of Solution
Given:
Record the given data
Hours consumed = 8.00 hrs
Downstream stream flow rate for the second plant = 1.80×104 L/s
Molar mass of HCl = 36.46 g
Molar mass of CaO =56.08 g
The hours consumed by CaO along with stream flow rate and molar masses of HCl and CaO are recorded as shown above.
To calculate the mass of CaO consumed by 8.00 hrs
The mass of CaO can be calculated from the mass of HCl
Mass of HCl=2.20×106 g
Therefore, the mass of CaO can be calculated by,
Mass of CaO consumed in 8 hours work day by the plant is 1.69×106 g
The mass of CaO consumed in 8 hrs work day by the plant is calculated by plugging in the values of mass of HCl with the molar masses of HCl and CaO to the flow rate of the downstream. The mass of CaO consumed is found to be 1.69×106 g.
d)
Interpretation: the concentration of
Concept Introduction: Concentration of solution can be defined in terms of molarity as moles of solute to the volume of solution. The concentration of solution can be given by,
d)
Answer to Problem 140CP
Concentration of
Explanation of Solution
Given:
Record the given data
Moles of calcium in the original stream = 10.2ppm
Mass of CaO = 1.69×106 g
Molar mass of CaO = 56.08 g
Molar mass of Ca2+ = 40.08 g
Downstream stream flow rate for the second plant = 1.80×104 L/s
Upstream at which the stream rate flows =
Downstream at which the plant discharges=
Total flow rate of the plant =
The molar masses of calcium and calcium oxide along with mass and moles of calcium oxide and calcium in stream along with total rate flow and the rate of upstream and downstream are recorded as shown above.
To calculate the concentration of Ca2+ in ppm downstream of the second plant if 90% of water is used.
The final concentration of Ca2+ returned by the second plant to the stream is 10.3 ppm
The concentration of Ca2+ if 90% of water is returned by the second plant to stream is calculated by using the concentration of Ca2+ before the water has been returned to the total volume. The final concentration of
Want to see more full solutions like this?
Chapter 6 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward
- . 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Q2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward
- 10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax