![Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card](https://www.bartleby.com/isbn_cover_images/9781337086431/9781337086431_largeCoverImage.gif)
Concept explainers
(a)
Interpretation: The mass percentage of compound along with balanced chemical equation and formula has to be written.
Concept introduction: The mass percent of compound is given by the calculated mass of the compound to the total mass. The mass percent of compound is given by the formula,
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 125CP
The mass percentage of
Explanation of Solution
Given:
Record the given info
Mass of sample containing chlorine =
Mass of sample containing cobalt =
Mass of silver chloride =
Mass of cobalt (III) oxide =
The mass of samples containing chlorine and cobalt are recorded with the masses of silver chloride and cobalt (III) oxide as shown above.
To calculate the mass percent of
Molar mass of Chlorine =
Molar mass of silver chloride =
Moles of
Therefore, the mass percent of
Mass percent of
Mass percent of
The mass percent of
To calculate the mass percent of
Molar mass of cobalt =
Molar mass of cobalt (III) oxide =
Moles of
Therefore, the mass percent of
Mass percent of
The mass percent of
To calculate the mass percent of water
Molar mass of water =
Assume that 100g of compound is,
The mass percent of hydrogen and oxygen is calculated by plugging in the molar mass of water and molar masses of hydrogen and oxygen to the total mass of the sample. The molar masses of hydrogen and oxygen were found to be
The mass percentages of
(b)
Interpretation: To calculate the empirical formula of the compound
Concept introduction: The representation of simplest positive integer of a atoms in a compound is called as empirical formula.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 125CP
The formula for the compound is
Explanation of Solution
To calculate the empirical formula of the compound
Out of 100 g of compound, there are
Dividing the moles by the smallest number,
The empirical formula of the compound becomes
The empirical formula of the compound is calculated by calculating the mole ratio of individual elements divide by the smallest number. The empirical formula of the compound is found to be
The empirical formula of the compound was calculated by using the mole ratio of individual elements divided by the smallest number. The empirical formula of the compound is found to be
(c)
Interpretation: To write the balanced equation of the precipitation reactions.
Concept introduction:
When two solutions containing soluble salts are mixed together, an insoluble salt so called precipitate is obtained and the reaction is called as precipitation reaction. These precipitation reactions help in the determination of various ions in the solution.’
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 125CP
This is redox reaction. Hence, an oxidizing agent is required and the oxidizing agent is
Explanation of Solution
To write the balanced equation of the precipitation reactions.
The reaction between cobalt chloride hexahydrate with base such as silver nitrate and sodium hydroxide yields precipitates of silver chloride and cobalt hydroxide with release of water and sodium chloride. The equation for this reaction can be given as,
Cobalt hydroxide oxidizes to cobalt (III) oxide and water.
Two moles of silver nitrate are required to react with cobalt chloride hexahydrate to give 2 moles of silver chloride as precipitate with side products being cobalt nitrate and water. Cobalt nitrate being water soluble remains inside the solution, thus precipitating silver chloride out of the solution.
Two moles of sodium hydroxide are required to react with cobalt chloride hexahydrate to give 2 moles of cobalt hydroxide with sodium chloride and water. Sodium chloride being soluble in water, dissociates as spectator ions thus remaining in the solution and a precipitate of cobalt hydroxide is precipitated out.
Cobalt hydroxide on heating is oxidized to cobalt (III) oxide with water.
The balanced form of these equations can be given as,
The reaction of heating cobalt hydroxide is
The given reactions were found to be precipitation reaction and moles on the reactant and the product were obtained. The reaction of heating cobalt hydroxide is oxidation-reduction reaction, where oxygen is used as oxidizing agent to oxidized cobalt hydroxide to cobalt (III) oxide. The balanced equations are,
Want to see more full solutions like this?
Chapter 6 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
- This deals with synthetic organic chemistry. Please fill in the blanks appropriately.arrow_forwardUse the References to access important values if needed for this question. What is the IUPAC name of each of the the following? 0 CH3CHCNH₂ CH3 CH3CHCNHCH2CH3 CH3arrow_forwardYou have now performed a liquid-liquid extraction protocol in Experiment 4. In doing so, you manipulated and exploited the acid-base chemistry of one or more of the compounds in your mixture to facilitate their separation into different phases. The key to understanding how liquid- liquid extractions work is by knowing which layer a compound is in, and in what protonation state. The following liquid-liquid extraction is different from the one you performed in Experiment 4, but it uses the same type of logic. Your task is to show how to separate apart Compound A and Compound B. . Complete the following flowchart of a liquid-liquid extraction. Handwritten work is encouraged. • Draw by hand (neatly) only the appropriate organic compound(s) in the boxes. . Specify the reagent(s)/chemicals (name is fine) and concentration as required in Boxes 4 and 5. • Box 7a requires the solvent (name is fine). • Box 7b requires one inorganic compound. • You can neatly complete this assignment by hand and…arrow_forward
- b) Elucidate compound D w) mt at 170 nd shows c-1 stretch at 550cm;' The compound has the ff electronic transitions: 0%o* and no a* 1H NMR Spectrum (CDCl3, 400 MHz) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 13C{H} NMR Spectrum (CDCl3, 100 MHz) Solvent 80 70 60 50 40 30 20 10 0 ppm ppm ¹H-13C me-HSQC Spectrum ppm (CDCl3, 400 MHz) 5 ¹H-¹H COSY Spectrum (CDCl3, 400 MHz) 0.5 10 3.5 3.0 2.5 2.0 1.5 1.0 10 15 20 20 25 30 30 -35 -1.0 1.5 -2.0 -2.5 3.0 -3.5 0.5 ppm 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppmarrow_forwardShow work with explanation. don't give Ai generated solutionarrow_forwardRedraw the flowchartarrow_forward
- redraw the flowchart with boxes and molecules written in themarrow_forwardPart I. a) Elucidate the structure of compound A using the following information. • mass spectrum: m+ = 102, m/2=57 312=29 • IR spectrum: 1002.5 % TRANSMITTANCE Ngg 50 40 30 20 90 80 70 60 MICRONS 5 8 9 10 12 13 14 15 16 19 1740 cm M 10 0 4000 3600 3200 2800 2400 2000 1800 1600 13 • CNMR 'H -NMR Peak 8 ppm (H) Integration multiplicity a 1.5 (3H) triplet b 1.3 1.5 (3H) triplet C 2.3 1 (2H) quartet d 4.1 1 (2H) quartet & ppm (c) 10 15 28 60 177 (C=0) b) Elucidate the structure of compound B using the following information 13C/DEPT NMR 150.9 MHz IIL 1400 WAVENUMBERS (CM-1) DEPT-90 DEPT-135 85 80 75 70 65 60 55 50 45 40 35 30 25 20 ppm 1200 1000 800 600 400arrow_forward• Part II. a) Elucidate The structure of compound c w/ molecular formula C10 11202 and the following data below: • IR spectra % TRANSMITTANCE 1002.5 90 80 70 60 50 40 30 20 10 0 4000 3600 3200 2800 2400 2000 1800 1600 • Information from 'HAMR MICRONS 8 9 10 11 14 15 16 19 25 1400 WAVENUMBERS (CM-1) 1200 1000 800 600 400 peak 8 ppm Integration multiplicity a 2.1 1.5 (3H) Singlet b 3.6 1 (2H) singlet с 3.8 1.5 (3H) Singlet d 6.8 1(2H) doublet 7.1 1(2H) doublet Information from 13C-nmR Normal carbon 29ppm Dept 135 Dept -90 + NO peak NO peak 50 ppm 55 ppm + NO peak 114 ppm t 126 ppm No peak NO peak 130 ppm t + 159 ppm No peak NO peak 207 ppm по реак NO peakarrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781559539418/9781559539418_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)