Pearson eText Fundamentals of Differential Equations with Boundary Value Problems -- Instant Access (Pearson+)
Pearson eText Fundamentals of Differential Equations with Boundary Value Problems -- Instant Access (Pearson+)
7th Edition
ISBN: 9780137394524
Author: R. Nagle, Edward Saff
Publisher: PEARSON+
bartleby

Videos

Textbook Question
Book Icon
Chapter 5.RP, Problem 1RP

In Problems 1-4, find a general solution x ( t ) , y ( t ) for the given system.

x + y + y = 0 , x + y = 0

Expert Solution & Answer
Check Mark
To determine

The general solution x(t) and y(t) for the systems of differential equations.

Answer to Problem 1RP

Solution:

The general solution of the system is x(t)=(C13)t3(C22)t2(C3+2C1)t+C4 and y(t)=C1t2+C2t+C3.

Here, C1,C2 and C3 are arbitrary constants.

Explanation of Solution

Given:

System of differential equations is,

x+y+y=0,x+y=0

Approach:

Use elimination method for solving algebraic systems.

Step1: Add or subtract the given equations to get an equation in single variable.

Step2: Solve the single variable equation.

Step3: substitute the value of variable obtained in Step2 in other equations to get the values of other unknowns.

Calculation:

Write the system using the operator notation.

x+y+y=0Dx+D2y+y=0

Dx+(D2+1)y=0            (1)

x+y=0

D2x+Dy=0            (2)

Multiply Equation (1) with D.

D2x+(D2+1)Dy=0            (3)

Subtract Equation (2) from Equation (3).

D2x+(D2+1)Dy(D2x+Dy)=0D3y=0      (4)

The auxiliary equation of Equation (4) is,

r3=0            (5)

Roots of Equation (5) are r=0,0,0.

So, the general solution of Equation (4) is y(t)=C1t2+C2t+C3.

Here, C1,C2 and C3 are arbitrary constants.

Dy=2C1t+C2D2y=2C1

From Equation (1),

Dx=(D2+1)y            (6)

Substitute C1t2+C2t+C3 for y and 2C1 for D2y in Equation (6).

Dx=(D2+1)y=(C1t2+C2t+C3)2C1=2C1C1t2C2tC3      (7)

Integrating both sides with respect to t in Equation (7).

x(t)=(2C1C1t2C2tC3)dt=(C13)t3(C22)t2(C3+2C1)t+C4

Therefore, the general solution of the system is x(t)=(C13)t3(C22)t2(C3+2C1)t+C4 and y(t)=C1t2+C2t+C3.

Here, C1,C2 and C3 are arbitrary constants.

Conclusion:

Hence, the general solution of the system is x(t)=(C13)t3(C22)t2(C3+2C1)t+C4 and y(t)=C1t2+C2t+C3.

Here, C1,C2 and C3 are arbitrary constants.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1) Calculate 49(B-1)2+7B−1AT+7ATB−1+(AT)2 2)Find a matrix C such that (B − 2C)-1=A 3) Find a non-diagonal matrix E ̸= B such that det(AB) = det(AE)
1.2.4. (-) Let G be a graph. For v € V(G) and e = E(G), describe the adjacency and incidence matrices of G-v and G-e in terms of the corresponding matrices for G.
1.2.6. (-) In the graph below (the paw), find all the maximal paths, maximal cliques, and maximal independent sets. Also find all the maximum paths, maximum cliques, and maximum independent sets.

Chapter 5 Solutions

Pearson eText Fundamentals of Differential Equations with Boundary Value Problems -- Instant Access (Pearson+)

Ch. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - Prob. 14ECh. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - Prob. 16ECh. 5.2 - Prob. 17ECh. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - In Problems 19-21, solve the given initial value...Ch. 5.2 - In Problems 19-21, solve the given initial value...Ch. 5.2 - Prob. 21ECh. 5.2 - Prob. 22ECh. 5.2 - Prob. 23ECh. 5.2 - Prob. 24ECh. 5.2 - In Problems 25-28, use the elimination method to...Ch. 5.2 - Prob. 26ECh. 5.2 - Prob. 27ECh. 5.2 - Prob. 28ECh. 5.2 - Prob. 29ECh. 5.2 - Prob. 30ECh. 5.2 - Two large tanks, each holding 100L of liquid, are...Ch. 5.2 - In Problem 31, 3L/min of liquid flowed from tank A...Ch. 5.2 - In Problem 31, assume that no solution flows out...Ch. 5.2 - Feedback System with Pooling Delay. Many physical...Ch. 5.2 - Arms Race. A simplified mathematical model for an...Ch. 5.2 - Let A, B, and C represent three linear...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - Prob. 8ECh. 5.3 - In Section 3.6, we discussed the improved Eulers...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - Prob. 14ECh. 5.3 - In Problems 14-24, you will need a computer and a...Ch. 5.3 - In Problems 14-24, you will need a computer and a...Ch. 5.3 - Prob. 18ECh. 5.3 - Prob. 19ECh. 5.3 - In Problems 14-24, you will need a computer and a...Ch. 5.3 - Prob. 21ECh. 5.3 - Prob. 22ECh. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - Prob. 28ECh. 5.3 - In Problems 25-30, use a software package or the...Ch. 5.3 - Prob. 30ECh. 5.4 - In Problems 1 and 2, verify that the pair x(t),...Ch. 5.4 - In Problems 1 and 2, verify that pair x(t), y(t)...Ch. 5.4 - In Problems 3-6, find the critical point set for...Ch. 5.4 - Prob. 4ECh. 5.4 - In Problems 3-6, find the critical point set for...Ch. 5.4 - In Problems 3-6, find the critical point set for...Ch. 5.4 - In Problems 7-9, solve the related phase plane...Ch. 5.4 - In Problems 7-9, solve the related phase plane...Ch. 5.4 - In Problems 7-9, solve the related phase plane...Ch. 5.4 - Find all the critical points of the system...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - Prob. 21ECh. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - Prob. 23ECh. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - Prob. 25ECh. 5.4 - Prob. 26ECh. 5.4 - Prob. 27ECh. 5.4 - Prob. 28ECh. 5.4 - A proof of Theorem 1, page 266, is outlined below....Ch. 5.4 - Phase plane analysis provides a quick derivation...Ch. 5.4 - Prob. 32ECh. 5.4 - Prob. 34ECh. 5.4 - Sticky Friction. An alternative for the damping...Ch. 5.4 - Rigid Body Nutation. Eulers equations describe the...Ch. 5.5 - Radioisotopes and Cancer Detection. A radioisotope...Ch. 5.5 - Secretion of Hormones. The secretion of hormones...Ch. 5.5 - Prove that the critical point (8) of the...Ch. 5.5 - Suppose for a certain disease described by the SIR...Ch. 5.5 - Prob. 6ECh. 5.5 - Prob. 7ECh. 5.5 - Prob. 8ECh. 5.5 - Prob. 9ECh. 5.5 - Prove that the infected population I(t) in the SIR...Ch. 5.6 - Two springs and two masses are attached in a...Ch. 5.6 - Determine the equations of motion for the two...Ch. 5.6 - Four springs with the same spring constant and...Ch. 5.6 - Two springs, two masses, and a dashpot are...Ch. 5.6 - Referring to the coupled mass-spring system...Ch. 5.6 - Prob. 7ECh. 5.6 - A double pendulum swinging in a vertical plane...Ch. 5.6 - Prob. 9ECh. 5.6 - Suppose the coupled mass-spring system of Problem...Ch. 5.7 - An RLC series circuit has a voltage source given...Ch. 5.7 - An RLC series circuit has a voltage source given...Ch. 5.7 - Prob. 3ECh. 5.7 - An LC series circuit has a voltage source given by...Ch. 5.7 - An RLC series circuit has a voltage source given...Ch. 5.7 - Show that when the voltage source in (4) is of the...Ch. 5.7 - Prob. 7ECh. 5.7 - Prob. 8ECh. 5.7 - Prob. 9ECh. 5.7 - Prob. 10ECh. 5.7 - In Problems 10-13, find a system of differential...Ch. 5.7 - In Problems 10-13, find a system of differential...Ch. 5.7 - In Problems 10-13, find a system of differential...Ch. 5.8 - A software package that supports the construction...Ch. 5.8 - Prob. 2ECh. 5.8 - A software package that supports the construction...Ch. 5.8 - Prob. 4ECh. 5.8 - Prob. 5ECh. 5.8 - A software package that supports the construction...Ch. 5.8 - Prob. 11ECh. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - Prob. 5RPCh. 5.RP - Prob. 6RPCh. 5.RP - Prob. 7RPCh. 5.RP - Prob. 8RPCh. 5.RP - Prob. 9RPCh. 5.RP - Prob. 10RPCh. 5.RP - Prob. 11RPCh. 5.RP - Prob. 12RPCh. 5.RP - Prob. 13RPCh. 5.RP - Prob. 14RPCh. 5.RP - Prob. 15RPCh. 5.RP - Prob. 16RPCh. 5.RP - Prob. 17RPCh. 5.RP - In the coupled mass-spring system depicted in...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Text book image
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Text book image
Calculus Volume 1
Math
ISBN:9781938168024
Author:Strang, Gilbert
Publisher:OpenStax College
Text book image
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Text book image
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY