Pearson eText Fundamentals of Differential Equations with Boundary Value Problems -- Instant Access (Pearson+)
Pearson eText Fundamentals of Differential Equations with Boundary Value Problems -- Instant Access (Pearson+)
7th Edition
ISBN: 9780137394524
Author: R. Nagle, Edward Saff
Publisher: PEARSON+
bartleby

Videos

Textbook Question
Book Icon
Chapter 5.4, Problem 36E

Rigid Body Nutation. Euler’s equations describe the motion of the principal-axis components of the angular velocity of a freely rotating rigid body (such as a space station), as seen by an observer rotating with the body (the astronauts, for example). This motion is called nutation. If the angular velocity components are denoted by x , y , and z , then an example of Euler’s equation is the three-dimensional autonomous system

d x / d t = y z , d y / d t = 2 x z , d z / d t = x y .

The trajectory of a solution x ( t ) ,   y ( t ) , z ( t ) to these equations is the curve generated by the points ( x ( t ) , y ( t ) , z ( t ) ) in x y z -phase space as t varies over an interval I .

a. Show that each trajectory of this system lies on the surface of a (possibly degenerate) sphere centered at the origin ( 0 , 0 , 0 ) . [Hint: Compute d d t ( x 2 + y 2 + z 2 ) .] What does this say about the magnitude of the angular velocity vector?

b. Find all the critical points of the system, i.e. all points ( x 0 , y 0 , z 0 ) such that

x ( t ) x 0 , y ( t ) y 0 , z ( t ) z 0 is a solution. For such solutions, the angular velocity vector remains constant in the body system.

c. Show that the trajectories of the system lie along the intersection of a sphere and an elliptic cylinder of the form y 2 + 2 x 2 = C , for some constant C .[ Hint: Consider the expression for d y / d x implied by Euler’s equations.]

d. Using the results of parts (b) and (c), argue that the trajectories of this system are closed curves. What does this say about the corresponding solutions?

e. Figure 5 . 1 9 displays some typical trajectories for this system. Discuss the stability of the three critical points indicated on the positive axes.

Chapter 5.4, Problem 36E, Rigid Body Nutation. Eulers equations describe the motion of the principal-axis components of the

Figure 5 . 1 9 Trajectories for Euler’s system

Blurred answer
Students have asked these similar questions
Newton's Law of Cooling tells us that the rate of change of the temperature of an object is proportional to the temperature difference between the object and its surroundings. This can be modeled by the differential equation dT dt k(TA), where T is the temperature of the object after t units of time have passed, A is the ambient temperature of the object's surroundings, and k is a constant of proportionality. Suppose that a cup of coffee begins at 178 degrees and, after sitting in room temperature of 61 degrees for 12 minutes, the coffee reaches 171 degrees. How long will it take before the coffee reaches 155 degrees? Include at least 2 decimal places in your answer. minutes
Decide whether each limit exists. If a limit exists, estimate its value. 11. (a) lim f(x) x-3 f(x) ↑ 4 3- 2+ (b) lim f(x) x―0 -2 0 X 1234
can you help me solve this question and show workings please

Chapter 5 Solutions

Pearson eText Fundamentals of Differential Equations with Boundary Value Problems -- Instant Access (Pearson+)

Ch. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - Prob. 14ECh. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - Prob. 16ECh. 5.2 - Prob. 17ECh. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - In Problems 19-21, solve the given initial value...Ch. 5.2 - In Problems 19-21, solve the given initial value...Ch. 5.2 - Prob. 21ECh. 5.2 - Prob. 22ECh. 5.2 - Prob. 23ECh. 5.2 - Prob. 24ECh. 5.2 - In Problems 25-28, use the elimination method to...Ch. 5.2 - Prob. 26ECh. 5.2 - Prob. 27ECh. 5.2 - Prob. 28ECh. 5.2 - Prob. 29ECh. 5.2 - Prob. 30ECh. 5.2 - Two large tanks, each holding 100L of liquid, are...Ch. 5.2 - In Problem 31, 3L/min of liquid flowed from tank A...Ch. 5.2 - In Problem 31, assume that no solution flows out...Ch. 5.2 - Feedback System with Pooling Delay. Many physical...Ch. 5.2 - Arms Race. A simplified mathematical model for an...Ch. 5.2 - Let A, B, and C represent three linear...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - Prob. 8ECh. 5.3 - In Section 3.6, we discussed the improved Eulers...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - Prob. 14ECh. 5.3 - In Problems 14-24, you will need a computer and a...Ch. 5.3 - In Problems 14-24, you will need a computer and a...Ch. 5.3 - Prob. 18ECh. 5.3 - Prob. 19ECh. 5.3 - In Problems 14-24, you will need a computer and a...Ch. 5.3 - Prob. 21ECh. 5.3 - Prob. 22ECh. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - Prob. 28ECh. 5.3 - In Problems 25-30, use a software package or the...Ch. 5.3 - Prob. 30ECh. 5.4 - In Problems 1 and 2, verify that the pair x(t),...Ch. 5.4 - In Problems 1 and 2, verify that pair x(t), y(t)...Ch. 5.4 - In Problems 3-6, find the critical point set for...Ch. 5.4 - Prob. 4ECh. 5.4 - In Problems 3-6, find the critical point set for...Ch. 5.4 - In Problems 3-6, find the critical point set for...Ch. 5.4 - In Problems 7-9, solve the related phase plane...Ch. 5.4 - In Problems 7-9, solve the related phase plane...Ch. 5.4 - In Problems 7-9, solve the related phase plane...Ch. 5.4 - Find all the critical points of the system...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - Prob. 21ECh. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - Prob. 23ECh. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - Prob. 25ECh. 5.4 - Prob. 26ECh. 5.4 - Prob. 27ECh. 5.4 - Prob. 28ECh. 5.4 - A proof of Theorem 1, page 266, is outlined below....Ch. 5.4 - Phase plane analysis provides a quick derivation...Ch. 5.4 - Prob. 32ECh. 5.4 - Prob. 34ECh. 5.4 - Sticky Friction. An alternative for the damping...Ch. 5.4 - Rigid Body Nutation. Eulers equations describe the...Ch. 5.5 - Radioisotopes and Cancer Detection. A radioisotope...Ch. 5.5 - Secretion of Hormones. The secretion of hormones...Ch. 5.5 - Prove that the critical point (8) of the...Ch. 5.5 - Suppose for a certain disease described by the SIR...Ch. 5.5 - Prob. 6ECh. 5.5 - Prob. 7ECh. 5.5 - Prob. 8ECh. 5.5 - Prob. 9ECh. 5.5 - Prove that the infected population I(t) in the SIR...Ch. 5.6 - Two springs and two masses are attached in a...Ch. 5.6 - Determine the equations of motion for the two...Ch. 5.6 - Four springs with the same spring constant and...Ch. 5.6 - Two springs, two masses, and a dashpot are...Ch. 5.6 - Referring to the coupled mass-spring system...Ch. 5.6 - Prob. 7ECh. 5.6 - A double pendulum swinging in a vertical plane...Ch. 5.6 - Prob. 9ECh. 5.6 - Suppose the coupled mass-spring system of Problem...Ch. 5.7 - An RLC series circuit has a voltage source given...Ch. 5.7 - An RLC series circuit has a voltage source given...Ch. 5.7 - Prob. 3ECh. 5.7 - An LC series circuit has a voltage source given by...Ch. 5.7 - An RLC series circuit has a voltage source given...Ch. 5.7 - Show that when the voltage source in (4) is of the...Ch. 5.7 - Prob. 7ECh. 5.7 - Prob. 8ECh. 5.7 - Prob. 9ECh. 5.7 - Prob. 10ECh. 5.7 - In Problems 10-13, find a system of differential...Ch. 5.7 - In Problems 10-13, find a system of differential...Ch. 5.7 - In Problems 10-13, find a system of differential...Ch. 5.8 - A software package that supports the construction...Ch. 5.8 - Prob. 2ECh. 5.8 - A software package that supports the construction...Ch. 5.8 - Prob. 4ECh. 5.8 - Prob. 5ECh. 5.8 - A software package that supports the construction...Ch. 5.8 - Prob. 11ECh. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - Prob. 5RPCh. 5.RP - Prob. 6RPCh. 5.RP - Prob. 7RPCh. 5.RP - Prob. 8RPCh. 5.RP - Prob. 9RPCh. 5.RP - Prob. 10RPCh. 5.RP - Prob. 11RPCh. 5.RP - Prob. 12RPCh. 5.RP - Prob. 13RPCh. 5.RP - Prob. 14RPCh. 5.RP - Prob. 15RPCh. 5.RP - Prob. 16RPCh. 5.RP - Prob. 17RPCh. 5.RP - In the coupled mass-spring system depicted in...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
UG/ linear equation in linear algebra; Author: The Gate Academy;https://www.youtube.com/watch?v=aN5ezoOXX5A;License: Standard YouTube License, CC-BY
System of Linear Equations-I; Author: IIT Roorkee July 2018;https://www.youtube.com/watch?v=HOXWRNuH3BE;License: Standard YouTube License, CC-BY