Tocalculate:The original price of affordable jeans and equation inequality.
Answer to Problem 39E
The equation of inequality is
Explanation of Solution
Given information: Totalmoneyavailable is
Calculation:
Let the original price of the jeans is
Off given by store at the original price of jeans =
Price of jeans after offer of store
Price of jeans after offer of store
Therefore, the inequality is obtained as:
To solve inequality, subtract 8 from both side
Hence,
The equation of inequality is
Chapter 5 Solutions
Holt Mcdougal Larson Pre-algebra: Student Edition 2012
Additional Math Textbook Solutions
Intro Stats, Books a la Carte Edition (5th Edition)
Elementary Statistics (13th Edition)
Algebra and Trigonometry (6th Edition)
Precalculus
Introductory Statistics
A First Course in Probability (10th Edition)
- 1 2 5. Let S = 0 0 statements is true? and consider the subset W = {A Є M22 | SA = AS}. Which one of the following A. W is not a subspace of M22 = 4 B. W is a subspace of M22, and dim W C. W is a subspace of M22, and dim W = 3 D. W is a subspace of M22, and dim W = 2 E. W is a subspace of M22, and dim W = 1 F. W is a subspace of M22, and dim W = 0arrow_forwardA tablet computer has a 1 inch border of plastic around the screen. What is the area of the plastic border?arrow_forwardPlease answer with the correct answer only for each question.arrow_forward
- When multiplying, 20/35 x 49/10 you could start by (select all that apply) 1)dividing the first denominator and second numerator by 7. 2.)dividing the both denominators by 5. 3)dividing the first numerator and first denominator by 5. 4.)dividing the first numerator and second denominator by 10.arrow_forwardPlease use simple terms when giving an explanationarrow_forward(b) g(x) = log3(x+2) Sketch the graph. y 10 X -10 -5 5 10 -10 -5 10 y -5 5 -10 X 2 4 6 8 10 10 y -5 -10 -10- State the domain and range. (Enter your answers using interval notation.) domain range State the asymptote. Need Help? Read It 5 y 10 -5 5 -10L X 5 10 x -8 -6 -4 A Sarah Nasri Sarah Nasri Hilly Hilly Amy Goyal Amy Goyal Alisha Williams Alisha Williams Chris Sabino (he/him)arrow_forward
- 3. [-/2.5 Points] DETAILS MY NOTES SCOLALG7 4.T.001. 0/100 Submissions Used Sketch the graph of each function, and state its domain, range, and asymptote. Show the x- and y-intercepts on the graph. f(x) 2-x+4 (a) Sketch the graph. ASK YOUR TEACHER y 10 y 10г 5 X -10 -5 5 10 2 4 6 8 10 10 y 5 -5 10' -10 -10 -8 -6 -4 2 -10 -5 State the domain and range. (Enter your answers using interval notation.) domain range State the asymptote. 10 y 5 -5 -10 5 10 X Sarah Nasri Sarah Nasri elijah jones elijah jones Amy Goyal Amy Goyal I'm away Alisha Williams Alisha Williams Chris Sabino (he/him)arrow_forwardA graph of a function is given. Use the graph to find the indicated values. y 4 0 (a) g¯¹(0) (b) g-1 (1) (c) g¯¹(6) Need Help? Read It 16.0 g 4 ☑ Sarah Nasri elijah jones Amy Goyal Alisha Williamsarrow_forward1. [0/2.5 Points] used for your score. DETAILS MY NOTES SCOLALG7 2.6.061. 1/100 Submissions Used PREVIOUS ANSWERS ASK YOUR TEACHER A function f is given, and the indicated transformations are applied to its graph (in the given order). Write the equation for the final transformed graph. f(x) = x²; stretch vertically by a factor of 4, shift downward 2 units, and shift 3 units to the right y Need Help? Read It Watch It Show My Work (Optional)? Submit Answer Run script "open_bc_enhanced ('watch_it', %20'https://college.cengage.com/geyser/cengage_9780538738101/html/watchit_player/?asset=scolalg5_03_05_043&prod=scolalg5',%201)"arrow_forward
- Exercise 14.4. Let R be a ring, and Z(R) = {a Є R | ab = ba, \b € R} For every nЄN, show that Z(Mn(R)) = - {( - ) \ - - x m} a Z(R)arrow_forward: G → Exercise 14.5. Let G be a group and R be a ring. Show that every group homomorphism R* can be uniquely extended to a ring homomorphism & : Z[G] → R satisfying that (g) = (g) for every g € G.arrow_forwardExercise 14.6. Let R = C.1+C · i + C · j +C · k, where the addition and the multiplication laws of R are extended from the Hamilton quaternion algebra, i.e. 1, i, j, k satisfy 1 · a = a = a· 1, Va € R, i² = j² = k² = −1, ij = k = − ji. Show that R is isomorphic to M2(C). (Hint: consider the extension of the ring homomorphism from H into M2(C).)arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education