Concept explainers
To find the number of paychecks needed for camping trip.
Answer to Problem 31E
Number of paychecks needed for camping trip is 5
Explanation of Solution
Given information:
Consider the given information:
Total amount required for camping,
Amount in savings account
Amount on each paycheck
Calculation:
Assume the number of paychecks to be x
Therefore, apart from the amount in the savings account to achieve the required amount of $400, total amount from paychecks required is
Therefore, the equation can be written as,
Solve the equation,
Since, the greatest number of decimal places in any of the given term is 2, therefore multiply each side of the equation by 100.
Hence , number of paychecks still needed is
Chapter 5 Solutions
Holt Mcdougal Larson Pre-algebra: Student Edition 2012
Additional Math Textbook Solutions
Introductory Statistics
Pre-Algebra Student Edition
University Calculus: Early Transcendentals (4th Edition)
College Algebra with Modeling & Visualization (5th Edition)
College Algebra (7th Edition)
Intro Stats, Books a la Carte Edition (5th Edition)
- Show what to do on the graph visually please!arrow_forwardThe county's new asphalt paving machine can surface 1 km of highway in 10 h. A much older machine can surface 1 km in 18 h. How long will it take them to surface 21 km of highway if they start at opposite ends and work day and night?arrow_forward3. Write a system of linear equations in slope intercept form that has exactly one solution at the point (3, 4), such that one line has positive slope (but not 1) and the other line has negative slope (but not "1). Also write your system of equations with both equations written in standard form with out any fractions 8- 7 8 5 4 3 -2- + -8-7-6-5-4-3-2-1 1 2 3 -1 2 - ° 4 -5 - -8arrow_forward
- 2. Write a system of linear equations in slope-intercept form has exactly one solution at the point (3, 4), such that both lines have negative slope (but neither one has slope of 1). Also write your system of equations with both equations written in standard form without any fractions. B 0 5 4 3 -2 1 -8-7-6-5-4-3-2 -1 12 3 -1 2 -3 -5 6 -7 -8arrow_forward4. Write a system of linear equations in slope-intercept form that has no solution, such that (3, 4), and (3,8) are solutions to the first equation, and (0, 4) is a solution to the second equation. Also write your system of equations with both equations written in standard form with out any fractions B 0 5 4 3 -2 + -8-7-6-5-4-3-2 -1 |- 1 2 3 -1 2 -3 4 -5 6 -7arrow_forwardShow how you can solve the system of equations by manipulating the algebra tiles while maintaining the balances. On this side of the page, use the addition (elimination) method. Keep track of what you did at each step by writing down the corresponding equivalent equations, as well as what you did to go from one equation to the next. 1. x + 2y = 5 x-2y=1 2. 2x+y=2 x-2y= 6arrow_forward
- e) x24 1) Which of these are equivalent to x³? For each expression that is equivalent to x², prove it by using the definition of exponents. For each that is not equivalent to x³, give an example using a specific value for x that shows that it represents a different number. a) (x5) d) f) 10-2 b) (x²) *|*arrow_forwardNow show how you can solve the system of equations by manipulating the algebra tiles while maintaining the balances, using the substitution method. Keep track of what you did at each step by writing down the corresponding equivalent equations, as well as what you did to go from one equation to the next. Δ 1. x + 2y = 5 x-2y=1 2. 2x + y = 2 x-2y= 6arrow_forward1. Write a system of two linear equations in slope-intercept form that has exactly one solution at the point (3, 4), such that both lines have positive slope (but neither one has slope of 1) Also write your system of equations with both equations written in standard form without any fractions. 8- 7 8 5 4 3 -2- + -8-7-6-5-4-3-2-1 1 2 3 -1 2 - 4 -5 -7 -8arrow_forward
- The original idea for creating this applet comes from Steve Phelps' Graph the Line applet. Directions: 1) Examine the equation shown on the right side of the screen. 2) Reposition the 2 big points so that the line is the graph of the displayed equation. 3) Click the "Check Answer" checkbox to check. If you're correct, the app will inform you. If you're not, you'll know this as well. If you're not correct, keep trying until you position the gray line correctly. 4) After correctly graphing the line, click the "Generate New Line" button.arrow_forwardProblem 1 & 2 answers 1. One diagonal has 11 squares, then total square in total for two diagonal line is 11 + 11 - 1 = 21 . 2. Each part has 5 squares.(except middle)Multiply by 4: 5 × 4 = 20.Add the middle square: 20 + 1 = 21.arrow_forward2. Now Figure out a different way you could determine how many squares there are in the figure, again without counting them all one-by-one. Briefly describe this other method:arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education