A Population Model The resident population of the United States in 2018 was 327 million people and was growing at a rate of 0.7 % per year. Assuming that this growth rate continues, the model P ( t ) = 327 ( 1.007 ) t − 2018 represents the population P (in millions of people) in year t . According to this model, when will the population of the United States be 415 million people? According to this model, when will the population of the United States be 470 million people?
A Population Model The resident population of the United States in 2018 was 327 million people and was growing at a rate of 0.7 % per year. Assuming that this growth rate continues, the model P ( t ) = 327 ( 1.007 ) t − 2018 represents the population P (in millions of people) in year t . According to this model, when will the population of the United States be 415 million people? According to this model, when will the population of the United States be 470 million people?
Solution Summary: The author explains that the population of the United States in 2018 was 327 million people and was growing at a rate of 0.7% per year.
A Population Model The resident population of the United States in
2018
was
327
million people and was growing at a rate of
0.7
%
per year. Assuming that this growth rate continues, the model
P
(
t
)
=
327
(
1.007
)
t
−
2018
represents the population
P
(in millions of people) in year
t
.
According to this model, when will the population of the United States be
415
million people?
According to this model, when will the population of the United States be
470
million people?
Consider the following system of equations, Ax=b :
x+2y+3z - w = 2
2x4z2w = 3
-x+6y+17z7w = 0
-9x-2y+13z7w = -14
a. Find the solution to the system. Write it as a parametric equation. You can use a
computer to do the row reduction.
b. What is a geometric description of the solution? Explain how you know.
c. Write the solution in vector form?
d. What is the solution to the homogeneous system, Ax=0?
2. Find a matrix A with the following qualities
a. A is 3 x 3.
b. The matrix A is not lower triangular and is not upper triangular.
c. At least one value in each row is not a 1, 2,-1, -2, or 0
d. A is invertible.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY