a.
To write an inequality to represent the given situation.
a.
Answer to Problem 31PPS
Explanation of Solution
Given:
An online music club allows him to download 25 songs per month for $14.99. additional songs cost $1.29 each.
Calculation:
Let t be his monthly spending limit and m represents the total number of songs downloaded.
Given that he can download 25 songs per month for $14.99. So, if he would by at a rate of $1.29 each, it will cost
So, he will have an additional of 17.26 if he download at the rate of #1.29 each.
If he will download additional songs beyond limit then the inequality that represent the situation would be
Thus, the inequalities for the given situation is
b.
The statement that best describe the number of songs can download.
b.
Answer to Problem 31PPS
C.
Jed can download a maximum of 36 songs if his budget is $30.
Explanation of Solution
Given:
An online music club allows him to download 25 songs per month for $14.99. additional songs cost $1.29 each.
Calculation:
Let t be his monthly spending limit and m represents the total number of songs downloaded.
Given that he can download 25 songs per month for $14.99. So, if he would by at a rate of $1.29 each, it will cost
So, he will have an additional of 17.26 if he buy at the rate of #1.29 each.
If he will download additional songs beyond limit then the inequality that represent the situation would be
Thus, the inequalities for the given situation is
If he downloads 37 songs with monthly limit of $30, it gives
If he downloads 45 songs with monthly limit of $40, it gives
If he downloads 36 songs with monthly limit of $30, it gives
And if he downloads 36 songs with monthly limit of $40, it gives
But in this case he can still download more songs with this budget.
Thus, the statement that Jed can download a maximum of 36 songs if his budget is $30.
c.
How the inequality changes if the music club changes its plan so that 50 songs can be downloaded a month.
c.
Answer to Problem 31PPS
D. The constant will increase
Explanation of Solution
Given:
An online music club allows him to download 50 songs per month for $14.99. additional songs cost $1.29 each.
Calculation:
Let t be his monthly spending limit and m represents the total number of songs downloaded.
Given that he can download 50 songs per month for $14.99. So, if he would by at a rate of $1.29 each, it will cost
So, it will change the constant in the inequality. The constant will increase.
Chapter 5 Solutions
Algebra 1
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
University Calculus: Early Transcendentals (4th Edition)
Elementary Statistics: Picturing the World (7th Edition)
College Algebra with Modeling & Visualization (5th Edition)
A First Course in Probability (10th Edition)
- Q1lal Let X be an arbitrary infinite set and let r the family of all subsets F of X which do not contain a particular point x, EX and the complements F of all finite subsets F of X show that (X.r) is a topology. bl The nbhd system N(x) at x in a topological space X has the following properties NO- N(x) for any xX N1- If N EN(x) then x€N N2- If NEN(x), NCM then MeN(x) N3- If NEN(x), MEN(x) then NOMEN(x) N4- If N = N(x) then 3M = N(x) such that MCN then MeN(y) for any уем Show that there exist a unique topology τ on X. Q2\a\let (X,r) be the topology space and BST show that ẞ is base for a topology on X iff for any G open set xEG then there exist A Eẞ such that x E ACG. b\Let ẞ is a collection of open sets in X show that is base for a topology on X iff for each xex the collection B, (BEB\xEB) is is a nbhd base at x. - Q31 Choose only two: al Let A be a subspace of a space X show that FCA is closed iff F KOA, K is closed set in X. الرياضيات b\ Let X and Y be two topological space and f:X -…arrow_forwardQ1\ Let X be a topological space and let Int be the interior operation defined on P(X) such that 1₁.Int(X) = X 12. Int (A) CA for each A = P(X) 13. Int (int (A) = Int (A) for each A = P(X) 14. Int (An B) = Int(A) n Int (B) for each A, B = P(X) 15. A is open iff Int (A) = A Show that there exist a unique topology T on X. Q2\ Let X be a topological space and suppose that a nbhd base has been fixed at each x E X and A SCX show that A open iff A contains a basic nbdh of each its point Q3\ Let X be a topological space and and A CX show that A closed set iff every limit point of A is in A. A'S A ACA Q4\ If ẞ is a collection of open sets in X show that ẞ is a base for a topology on X iff for each x E X then ẞx = {BE B|x E B} is a nbhd base at x. Q5\ If A subspace of a topological space X, if x Є A show that V is nbhd of x in A iff V = Un A where U is nbdh of x in X.arrow_forward+ Theorem: Let be a function from a topological space (X,T) on to a non-empty set y then is a quotient map iff vesy if f(B) is closed in X then & is >Y. ie Bclosed in bp closed in the quotient topology induced by f iff (B) is closed in x- التاريخ Acy الموضوع : Theorem:- IP & and I are topological space and fix sy is continuous او function and either open or closed then the topology Cony is the quatient topology p proof: Theorem: Lety have the quotient topology induced by map f of X onto y. The-x: then an arbirary map g:y 7 is continuous 7. iff gof: x > z is "g of continuous Continuous function farrow_forward
- For the problem below, what are the possible solutions for x? Select all that apply. 2 x²+8x +11 = 0 x2+8x+16 = (x+4)² = 5 1116arrow_forwardFor the problem below, what are the possible solutions for x? Select all that apply. x² + 12x - 62 = 0 x² + 12x + 36 = 62 + 36 (x+6)² = 98arrow_forwardSelect the polynomials below that can be solved using Completing the Square as written. 6m² +12m 8 = 0 Oh²-22x 7 x²+4x-10= 0 x² + 11x 11x 4 = 0arrow_forward
- Prove that the usual toplogy is firast countble or hot and second countble. ①let cofinte toplogy onx show that Sivast countble or hot and second firast. 3) let (x,d) be matricspace show that is first and second countble. 6 Show that Indiscret toplogy is firstand Second op countble or not.arrow_forwarda) Find the scalars p, q, r, s, k1, and k2. b) Is there a different linearly independent eigenvector associated to either k1 or k2? If yes,find it. If no, briefly explain.arrow_forwardThis box plot represents the score out of 90 received by students on a driver's education exam. 75% of the students passed the exam. What is the minimum score needed to pass the exam? Submitting x and Whickers Graph Low 62, C 62 66 70 74 78 82 86 90 Driver's education exam score (out of 90)arrow_forward
- How many different rectangles can be made whose side lengths, in centimeters, are counting numbers and whose are is 1,159 square centimeters? Draw and label all possible rectangles.arrow_forwardCo Given show that Solution Take home Су-15 1994 +19 09/2 4 =a log суто - 1092 ж = a-1 2+1+8 AI | SHOT ON S4 INFINIX CAMERAarrow_forwarda Question 7. If det d e f ghi V3 = 2. Find det -1 2 Question 8. Let A = 1 4 5 0 3 2. 1 Find adj (A) 2 Find det (A) 3 Find A-1 2g 2h 2i -e-f -d 273 2a 2b 2carrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education