A pressure cooker is a pot that cooks food much faster than ordinary pots by maintaining a higher pressure and temperature during cooking. The pressure inside the pot is controlled by a pressure regulator (the petcock) that keeps the pressure at a constant level by periodically allowing some steam to escape, thus preventing any excess pressure buildup. Pressure cookers, in general, maintain a gage pressure of 2 atm (or 3 atm absolute) inside. Therefore, pressure cookers cook at a temperature of about 133°C instead of 100°C, cutting the cooking time by as much as 70 percent while minimizing the loss of nutrients. The newer pressure cookers use a spring valve with several pressure settings rather than a weight on the cover.
A certain pressure cooker has a volume of 6 L and an operating pressure of 75 kPa gage. Initially, it contains 1 kg of water. Heat is supplied to the pressure cooker at a rate of 500 W for 30 min after the operating pressure is reached. Assuming an atmospheric pressure of 100 kPa, determine (a) the temperature at which cooking takes place and (b) the amount of water left in the pressure cooker at the end of the process. Answers: (a) 116.04°C, (b) 0.6 kg
(a)
The temperature at which cooking takes place.
Answer to Problem 184RP
The temperature at which cooking takes place is
Explanation of Solution
Write the formula for absolute pressure build up in the cooker.
Here, the absolute pressure is
When the pressure cooker reaches it maximum pressure, the petcock valve allows the steam to exit the cooker, the condition of exit steam is saturated vapor.
Hence, the cooking temperature
Conclusion:
Substitute
Refer Table A-5, “Saturated water-Temperature table”.
The saturation temperature corresponding to the pressure of
Thus, the temperature at which cooking takes place is
(a)
The amount water left in the pressure cooker at the end of the process.
Answer to Problem 184RP
The amount water left in the pressure cooker at the end of the process is
Explanation of Solution
Write the equation of mass balance.
Here, the inlet mass is
The change in mass of the system for the control volume is expressed as,
Here, the suffixes 1 and 2 indicates the initial and final states of the system.
Consider the given pressure cooker as the control volume.
Initially the cooker is filled with liquid and vapor and further no other mass is allowed to enter the cooker. Hence, the inlet mass is neglected i.e.
Rewrite the Equation (I) as follows.
At initial state:
There is saturated mixture of water present in the pressure cooker.
Write the formula of initial specific volume
Here, the volume of pressure cooker is
Write the formula for quality of mixture at initial state.
Write the formula for internal energy of steam at initial state.
Here, the specific volume is
Write the energy balance equation.
Here, the heat transfer is
Since the pressure cooker is not insulated, the heat transfer occurs through the pressure cooker wall. In control volume, there is no work transfer, i.e.
The Equation (V) reduced as follows.
Write the formula for amount of heat supplied to the cooker.
Here, the rate of heat supply is
Consider, at final state the pressure cooker consist of saturated mixture.
Write the formula for specific volume
Write the formula for internal energy
Write the formula for mass of steam
Here, the subscript 2 indicates the final state.
The properties of the steam at both initial and final states are equal, the only variation occurs with their quality.
The pressure cooker consist of mixture of vapor
Refer Table A-5, “Saturated water-Pressure table”.
Obtain the following corresponding to the pressure of
The initial fluid and gaseous specific volume is as follows.
The initial fluid and gaseous internal energy is as follows.
When the pressure cooker reaches it maximum pressure, the steam starts to exit the cooker, the condition of exit steam is saturated vapor.
Hence, the exit enthalpy
Conclusion:
Substitute
Substitute
Substitute
Equation (VI).
Substitute
Substitute
Equation (X).
Substitute
Substitute
Substitute
Substitute
Use Engineering Equation Solver (EES) or online calculator to solve the Equation (XIV) and obtain the value of
Substitute
Thus, the amount water left in the pressure cooker at the end of the process is
Want to see more full solutions like this?
Chapter 5 Solutions
Thermodynamics: An Engineering Approach
- auto controlsarrow_forward1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forward
- A lift with a counterweight is attached to the ceiling. The attachment is with 6 stainless and oiled screws. What screw size is required? What tightening torque? - The lift weighs 500 kg and can carry 800 kg. - Counterweight weight 600 kg - Durability class 12.8 = 960 MPa- Safety factor ns=5+-Sr/Fm= 0.29Gr =0.55arrow_forwardKnowing that a force P of magnitude 750 N is applied to the pedal shown, determine (a) the diameter of the pin at C for which the average shearing stress in the pin is 40 MPa, (b) the corresponding bearing stress in the pedal at C, (c) the corresponding bearing stress in each support bracket at C. 75 mm 300 mm- mm A B P 125 mm 5 mm C Darrow_forwardAssume the B frame differs from the N frame through a 90 degree rotation about the second N base vector. The corresponding DCM description is: 1 2 3 4 5 6 9 # adjust the return matrix values as needed def result(): dcm = [0, 0, 0, 0, 0, 0, 0, 0, 0] return dcmarrow_forward
- Find the reaction at A and B The other response I got was not too accurate,I need expert solved answer, don't use Artificial intelligence or screen shot it solvingarrow_forwardNo chatgpt plsarrow_forwardSolve for the reaction of all the forces Don't use artificial intelligence or screen shot it, only expert should solvearrow_forward
- No chatgpt plsarrow_forwardA six cylinder petrol engine has a compression ratio of 5:1. The clearance volume of each cylinder is 110CC. It operates on the four-stroke constant volume cycle and the indicated efficiency ratio referred to air standard efficiency is 0.56. At the speed of 2400 rpm. 44000KJ/kg. Determine the consumes 10kg of fuel per hour. The calorific value of fuel average indicated mean effective pressure.arrow_forwardThe members of a truss are connected to the gusset plate as shown in (Figure 1). The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F= 7.03 Submit ? kN Previous Answers Request Answer × Incorrect; Try Again; 21 attempts remaining ▾ Part B Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. Figure T₂ = 7.03 C T2 |? KN Submit Previous Answers Request Answer × Incorrect; Try Again; 23 attempts remaining Provide Feedbackarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY