Fundamentals of Differential Equations and Boundary Value Problems
Fundamentals of Differential Equations and Boundary Value Problems
7th Edition
ISBN: 9780321977106
Author: Nagle, R. Kent
Publisher: Pearson Education, Limited
bartleby

Videos

Textbook Question
Book Icon
Chapter 5.4, Problem 36E

Rigid Body Nutation. Euler’s equations describe the motion of the principal-axis components of the angular velocity of a freely rotating rigid body (such as a space station), as seen by an observer rotating with the body (the astronauts, for example). This motion is called nutation. If the angular velocity components are denoted by x , y , and z , then an example of Euler’s equation is the three-dimensional autonomous system

d x / d t = y z , d y / d t = 2 x z , d z / d t = x y .

The trajectory of a solution x ( t ) ,   y ( t ) , z ( t ) to these equations is the curve generated by the points ( x ( t ) , y ( t ) , z ( t ) ) in x y z -phase space as t varies over an interval I .

a. Show that each trajectory of this system lies on the surface of a (possibly degenerate) sphere centered at the origin ( 0 , 0 , 0 ) . [Hint: Compute d d t ( x 2 + y 2 + z 2 ) .] What does this say about the magnitude of the angular velocity vector?

b. Find all the critical points of the system, i.e. all points ( x 0 , y 0 , z 0 ) such that

x ( t ) x 0 , y ( t ) y 0 , z ( t ) z 0 is a solution. For such solutions, the angular velocity vector remains constant in the body system.

c. Show that the trajectories of the system lie along the intersection of a sphere and an elliptic cylinder of the form y 2 + 2 x 2 = C , for some constant C .[ Hint: Consider the expression for d y / d x implied by Euler’s equations.]

d. Using the results of parts (b) and (c), argue that the trajectories of this system are closed curves. What does this say about the corresponding solutions?

e. Figure 5 . 1 9 displays some typical trajectories for this system. Discuss the stability of the three critical points indicated on the positive axes.

Chapter 5.4, Problem 36E, Rigid Body Nutation. Eulers equations describe the motion of the principal-axis components of the

Figure 5 . 1 9 Trajectories for Euler’s system

Blurred answer
Students have asked these similar questions
Problem A bead is constrained to slide along a frictionless rod of length L. The rod is rotating in a vertical plane with a constant angular velocity ω about a pivot P fixed at the midpoint of the rod, but the design of the pivot allows the bead to move along the entire length of the rod. Let r(t) denote the position of the bead relative to this rotating coordinate system, as shown in FIGURE 3.R.1. In order to apply Newton’s second law of motion to this rotating frame of reference it is necessary to use the fact that the net force acting on the bead is the sum of the real forces (in this case, the force due to gravity) and the inertial forces (coriolis, transverse, and centrifugal). The mathematics is a little complicated, so we give just the resulting differential equation for r,   (a) Solve the foregoing DE subject to the initial conditions    (b) Determine initial conditions for which the bead exhibits simple harmonic motion. What is the minimum length L of the rod for which it…
The question is in the screenshot
TOA and roB are the position vectors of the two particles A and B at time t. If both particles start moving when t = 0, determine whether the particles collide and, if they do, give the value of t when this occurs and the position vector of the point of collision. If they do not, find the time and their distance apart when they are closest together. (a) rOA = 3i – 7j + (3i + 2j)t, roB = 8i – 6j + (2i + j)t. (b) roA = -5ị+2j+9k+(5i-j+2k)t, rOB =i+2j+3k+(3i-j+4k)t.

Chapter 5 Solutions

Fundamentals of Differential Equations and Boundary Value Problems

Ch. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - Prob. 14ECh. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - Prob. 16ECh. 5.2 - Prob. 17ECh. 5.2 - In Problems 3-18, use the elimination method to...Ch. 5.2 - In Problems 19-21, solve the given initial value...Ch. 5.2 - In Problems 19-21, solve the given initial value...Ch. 5.2 - Prob. 21ECh. 5.2 - Prob. 22ECh. 5.2 - Prob. 23ECh. 5.2 - Prob. 24ECh. 5.2 - In Problems 25-28, use the elimination method to...Ch. 5.2 - Prob. 26ECh. 5.2 - Prob. 27ECh. 5.2 - Prob. 28ECh. 5.2 - Prob. 29ECh. 5.2 - Prob. 30ECh. 5.2 - Two large tanks, each holding 100L of liquid, are...Ch. 5.2 - In Problem 31, 3L/min of liquid flowed from tank A...Ch. 5.2 - In Problem 31, assume that no solution flows out...Ch. 5.2 - Feedback System with Pooling Delay. Many physical...Ch. 5.2 - Arms Race. A simplified mathematical model for an...Ch. 5.2 - Let A, B, and C represent three linear...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - In Problems 1-7, convert the given initial value...Ch. 5.3 - Prob. 8ECh. 5.3 - In Section 3.6, we discussed the improved Eulers...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - In Problems 10-13, use the vectorized Euler method...Ch. 5.3 - Prob. 14ECh. 5.3 - In Problems 14-24, you will need a computer and a...Ch. 5.3 - In Problems 14-24, you will need a computer and a...Ch. 5.3 - Prob. 18ECh. 5.3 - Prob. 19ECh. 5.3 - In Problems 14-24, you will need a computer and a...Ch. 5.3 - Prob. 21ECh. 5.3 - Prob. 22ECh. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - Prob. 28ECh. 5.3 - In Problems 25-30, use a software package or the...Ch. 5.3 - Prob. 30ECh. 5.4 - In Problems 1 and 2, verify that the pair x(t),...Ch. 5.4 - In Problems 1 and 2, verify that pair x(t), y(t)...Ch. 5.4 - In Problems 3-6, find the critical point set for...Ch. 5.4 - Prob. 4ECh. 5.4 - In Problems 3-6, find the critical point set for...Ch. 5.4 - In Problems 3-6, find the critical point set for...Ch. 5.4 - In Problems 7-9, solve the related phase plane...Ch. 5.4 - In Problems 7-9, solve the related phase plane...Ch. 5.4 - In Problems 7-9, solve the related phase plane...Ch. 5.4 - Find all the critical points of the system...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 11-14, solve the related phase plane...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 15-18, find all critical points for...Ch. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - Prob. 21ECh. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - Prob. 23ECh. 5.4 - In Problems 19-24, convert the given second-order...Ch. 5.4 - Prob. 25ECh. 5.4 - Prob. 26ECh. 5.4 - Prob. 27ECh. 5.4 - Prob. 28ECh. 5.4 - A proof of Theorem 1, page 266, is outlined below....Ch. 5.4 - Phase plane analysis provides a quick derivation...Ch. 5.4 - Prob. 32ECh. 5.4 - Prob. 34ECh. 5.4 - Sticky Friction. An alternative for the damping...Ch. 5.4 - Rigid Body Nutation. Eulers equations describe the...Ch. 5.5 - Radioisotopes and Cancer Detection. A radioisotope...Ch. 5.5 - Secretion of Hormones. The secretion of hormones...Ch. 5.5 - Prove that the critical point (8) of the...Ch. 5.5 - Suppose for a certain disease described by the SIR...Ch. 5.5 - Prob. 6ECh. 5.5 - Prob. 7ECh. 5.5 - Prob. 8ECh. 5.5 - Prob. 9ECh. 5.5 - Prove that the infected population I(t) in the SIR...Ch. 5.6 - Two springs and two masses are attached in a...Ch. 5.6 - Determine the equations of motion for the two...Ch. 5.6 - Four springs with the same spring constant and...Ch. 5.6 - Two springs, two masses, and a dashpot are...Ch. 5.6 - Referring to the coupled mass-spring system...Ch. 5.6 - Prob. 7ECh. 5.6 - A double pendulum swinging in a vertical plane...Ch. 5.6 - Prob. 9ECh. 5.6 - Suppose the coupled mass-spring system of Problem...Ch. 5.7 - An RLC series circuit has a voltage source given...Ch. 5.7 - An RLC series circuit has a voltage source given...Ch. 5.7 - Prob. 3ECh. 5.7 - An LC series circuit has a voltage source given by...Ch. 5.7 - An RLC series circuit has a voltage source given...Ch. 5.7 - Show that when the voltage source in (4) is of the...Ch. 5.7 - Prob. 7ECh. 5.7 - Prob. 8ECh. 5.7 - Prob. 9ECh. 5.7 - Prob. 10ECh. 5.7 - In Problems 10-13, find a system of differential...Ch. 5.7 - In Problems 10-13, find a system of differential...Ch. 5.7 - In Problems 10-13, find a system of differential...Ch. 5.8 - A software package that supports the construction...Ch. 5.8 - Prob. 2ECh. 5.8 - A software package that supports the construction...Ch. 5.8 - Prob. 4ECh. 5.8 - Prob. 5ECh. 5.8 - A software package that supports the construction...Ch. 5.8 - Prob. 11ECh. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - In Problems 1-4, find a general solution x(t),...Ch. 5.RP - Prob. 5RPCh. 5.RP - Prob. 6RPCh. 5.RP - Prob. 7RPCh. 5.RP - Prob. 8RPCh. 5.RP - Prob. 9RPCh. 5.RP - Prob. 10RPCh. 5.RP - Prob. 11RPCh. 5.RP - Prob. 12RPCh. 5.RP - Prob. 13RPCh. 5.RP - Prob. 14RPCh. 5.RP - Prob. 15RPCh. 5.RP - Prob. 16RPCh. 5.RP - Prob. 17RPCh. 5.RP - In the coupled mass-spring system depicted in...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
UG/ linear equation in linear algebra; Author: The Gate Academy;https://www.youtube.com/watch?v=aN5ezoOXX5A;License: Standard YouTube License, CC-BY
System of Linear Equations-I; Author: IIT Roorkee July 2018;https://www.youtube.com/watch?v=HOXWRNuH3BE;License: Standard YouTube License, CC-BY