EBK AUTOMOTIVE TECHNOLOGY: A SYSTEMS AP
6th Edition
ISBN: 8220100474392
Author: ERJAVEC
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 54, Problem 1RQ
What is the amount of heat necessary to change the state of a substance called?
Expert Solution & Answer
To determine
The name given to the amount of heat necessary to change the state of a substance.
Answer to Problem 1RQ
The heat necessary to change the state of a substance is termed as latent heat.
Explanation of Solution
When there is a change in state of a substance that is the substance becomes liquid from solid or vapor from liquid or vice versa, a huge amount of heat is required, this heat is termed as latent heat of vaporization and this process is termed as phase change.
Phase change is quite a complex process and during this process, no change in pressure or temperature is observed.
Conclusion:
Thus, the heat necessary to change the state of a substance is termed as latent heat.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
I need expert handwritten solutions, don't use Artificial intelligence
Consider the combined gas-steam power cycle. The topping cycle is a gas-turbine cycle that has a pressure
ratio of 8. Air enters the compressor at 300 K and the turbine at 1300 K. The isentropic efficiency of the
compressor is 80%, and that of the gas turbine is 85%. The bottoming cycle is a simple Rankine cycle
operating between the pressure limits of 7 MPa and 5 kPa. Steam is heated in a heat exchanger by the
exhaust gases to a temperature of 500°C and the isentropic efficiency of the turbine is 90 %. The exhaust
gases leave the heat exchanger at 450 K. Considering the mass flow rate steam as 1 kg/s, determine:
A) Net power, B) Total input heat, C) Total entropy generation, D) Energy efficiency, E) Exergy efficiency,
F) T-s diagram
Solve by EES
Compressor
Air -③
in
Exhaust
gases
Pump
Combustion
chamber
Gas
turbine
Gas cycle
Heat exchanger
Condenser
Steam
Steam
turbine
cycle
I need expert solution s to this question, don't use Artificial intelligence
Chapter 54 Solutions
EBK AUTOMOTIVE TECHNOLOGY: A SYSTEMS AP
Ch. 54 - What is the amount of heat necessary to change the...Ch. 54 - What type of electromagnetic clutch is used in...Ch. 54 - Describe four ways in which the heater control...Ch. 54 - What is the purpose of the compressor clutch...Ch. 54 - What does change of state mean? And why is it...Ch. 54 - What state is the refrigerant in when it leaves...Ch. 54 - What causes condensed water to leak from the air...Ch. 54 - On which of the following laws of nature is the...Ch. 54 - Which of the following statements is true?...Ch. 54 - Which of the following statements is false? The...
Ch. 54 - Which of the following statements about PTC...Ch. 54 - Which of the following is electrically connected...Ch. 54 - Explain why a diode may be wired into the compres...Ch. 54 - Which of the following oils is used in an original...Ch. 54 - A heating system includes all of the following...Ch. 54 - Technician A says that a great amount of heat is...Ch. 54 - Technician A says that suction lines become very...Ch. 54 - While discussing the reasons the use of R-134a is...Ch. 54 - While discussing the reaction by a refrigerant to...Ch. 54 - While discussing solar sensors: Technician A says...Ch. 54 - While discussing the future use of CO2 as a...Ch. 54 - Technician A says that when the A7C system is off,...Ch. 54 - Technician A says that when the refrigerant is...Ch. 54 - A heater does not supply enough heat and the...Ch. 54 - While discussing relative humidity: Technician A...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need solutions to this questions Don't use Artificial intelligencearrow_forwardPlease consider the following closed-loop Multiple-Input Multiple-Output (MIMO) control system: R₁(s) and R2(s) are the reference signals (or inputs), • G₁(s) (where i = 1,2,3,4,5) are the plant transfer functions, • C₁(s) and C2(s) are the responses (or system outputs), • All of them are in Laplace domain. R2 + R₁ + + G₂(s) G3(S) Tasks: G5(s) G4(s) + G₁(s) می a) Please derive the transfer function between C₁ (s) and R₂(s) (i.e., find R₂(s) (10 marks) (10 marks) b) Please derive the transfer function between C₂(s) and R₁(s) (i.e., find C2 (s)). R₁(s) Hint: Please carefully analyse how the signals interact with the plants G₁(s) and find all paths fromarrow_forwardMột thanh dài L = 2,5 m được nối bằng chốt với một con lăn ở A. Con lăn chuyển động dọc theo một đường ray nằm ngang như hình vẽ với VA 5 m/s. Xác định vận tốc của điểm C (trung điểm của thanh AB) = tại thời điểm 0 = 33° và O = 0.4 rad/s. A. v = (-5.42+0.272})(m/s) C. v = (5.421+0.272})(m/s) B. v =(0.272i+5.42j)(ms) D. (5.42-0.272)(m/s) = C Barrow_forward
- The simulink and Matlab part are the prioritized areas please.arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forwardAn industrial burner uses natural gas as fuel. The natural gas consists primarily of CH4 with small quantities of several other light hydrocarbons and can be represented as C1.16H4.32 To achieve low emissions of oxides of nitrogen, the burner operates lean at equivalence ratio of 0.4. Assume complete combustion and answer the following questions. i) What is the operating air-fuel ratio (i.e. mass air/mass of fuel)? [6 marks] ii) What is the percent excess air in the combustion products? [3 marks] iii) What is the oxygen (O2) mole fraction in the combustion products? [6 marks]arrow_forward
- 1) Consider the robot, with six degrees of freedom, RRPRR, shown in the following figure.Place the axes through the denavit-hartenberg algorithm and obtain the respective parameter table for the first three joints. 2) Considering the robot from question 1, calculate.the. Determine the Homogeneous Transformation Matrix in relation to the Direct Kinematics of the robot, for the first three joints:b. Considering the first three joints of the robot and L1 and L2 equal to 200 mm:I. calculate the pose of the robot relative to the base, knowing the joint variableshave the following values: q1= 90°, q2= 0°, q3= 50mm:arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forwardDon't use Artificial intelligencearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
- Electrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage LearningWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license