In each of Problems 9 through 24, using the linearity of L − 1 , partial fraction expansions, and Table 5.3.1 to find the inverse Laplace transform of the given function: s 2 + 3 ( s 2 + 2 s + 2 ) 2 TABLE 5. 3. 1 Elementary Laplace transforms. f ( t ) = L − 1 { F ( s ) } F ( s ) = L { f ( t ) } e a t sin b t b ( s − a ) 2 + b 2 , s > a e a t cos b t s − a ( s − a ) 2 + b 2 , s > a
In each of Problems 9 through 24, using the linearity of L − 1 , partial fraction expansions, and Table 5.3.1 to find the inverse Laplace transform of the given function: s 2 + 3 ( s 2 + 2 s + 2 ) 2 TABLE 5. 3. 1 Elementary Laplace transforms. f ( t ) = L − 1 { F ( s ) } F ( s ) = L { f ( t ) } e a t sin b t b ( s − a ) 2 + b 2 , s > a e a t cos b t s − a ( s − a ) 2 + b 2 , s > a
In each of Problems 9 through 24, using the linearity of
L
−
1
, partial fraction expansions, and Table 5.3.1 to find the inverse Laplace transform of the given function:
s
2
+
3
(
s
2
+
2
s
+
2
)
2
TABLE 5. 3. 1
Elementary Laplace transforms.
f
(
t
)
=
L
−
1
{
F
(
s
)
}
F
(
s
)
=
L
{
f
(
t
)
}
e
a
t
sin
b
t
b
(
s
−
a
)
2
+
b
2
,
s
>
a
e
a
t
cos
b
t
s
−
a
(
s
−
a
)
2
+
b
2
,
s
>
a
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.