The double improper integral ∫ − ∞ ∞ ∫ − ∞ ∞ e ( − x 2 + y 2 / 2 ) d x d y may be defined as the limit value of the double integrals ∬ D a e ( − x 2 + y 2 / 2 ) d A over disks D a of radii a centered at the origin, as a increases without bound; that is, ∫ − ∞ ∞ ∫ − ∞ ∞ e ( − x 2 ) + y 2 / 2 d y d x = a → ∞ lim ∬ D a e ( − x 2 + y 2 / 2 ) d A a. Use polar coordinates to show that ∫ − ∞ ∞ ∫ − ∞ ∞ e ( − x 2 + y 2 / 2 ) d y d x = 2 π b. Show that ∫ − ∞ ∞ e − x 2 / 2 d x = 2 π by using the relation emsp; ∫ − ∞ ∞ ∫ − ∞ ∞ e ( − x 2 ) + y 2 / 2 d y d x = a → ∞ lim ∬ D a e ( − x 2 + y 2 / 2 ) d A
The double improper integral ∫ − ∞ ∞ ∫ − ∞ ∞ e ( − x 2 + y 2 / 2 ) d x d y may be defined as the limit value of the double integrals ∬ D a e ( − x 2 + y 2 / 2 ) d A over disks D a of radii a centered at the origin, as a increases without bound; that is, ∫ − ∞ ∞ ∫ − ∞ ∞ e ( − x 2 ) + y 2 / 2 d y d x = a → ∞ lim ∬ D a e ( − x 2 + y 2 / 2 ) d A a. Use polar coordinates to show that ∫ − ∞ ∞ ∫ − ∞ ∞ e ( − x 2 + y 2 / 2 ) d y d x = 2 π b. Show that ∫ − ∞ ∞ e − x 2 / 2 d x = 2 π by using the relation emsp; ∫ − ∞ ∞ ∫ − ∞ ∞ e ( − x 2 ) + y 2 / 2 d y d x = a → ∞ lim ∬ D a e ( − x 2 + y 2 / 2 ) d A
The double improper integral
∫
−
∞
∞
∫
−
∞
∞
e
(
−
x
2
+
y
2
/
2
)
d
x
d
y
may be defined as the limit value of the double integrals
∬
D
a
e
(
−
x
2
+
y
2
/
2
)
d
A
over disks
D
a
of radii a centered at the origin, as a increases without bound; that is,
∫
−
∞
∞
∫
−
∞
∞
e
(
−
x
2
)
+
y
2
/
2
d
y
d
x
=
a
→
∞
lim
∬
D
a
e
(
−
x
2
+
y
2
/
2
)
d
A
a. Use polar coordinates to show that
∫
−
∞
∞
∫
−
∞
∞
e
(
−
x
2
+
y
2
/
2
)
d
y
d
x
=
2
π
b. Show that
∫
−
∞
∞
e
−
x
2
/
2
d
x
=
2
π
by using the relation emsp;
∫
−
∞
∞
∫
−
∞
∞
e
(
−
x
2
)
+
y
2
/
2
d
y
d
x
=
a
→
∞
lim
∬
D
a
e
(
−
x
2
+
y
2
/
2
)
d
A
3. Let
f(z) =
sin (22) + cos (T2)
2(22+1)(z+1)
Compute f(z)dz over each of the contours/closed curves C1, C2, C3 and C4 shown
below.
Don't use any Al tool
Don't send the same
previous answer that
was Al generated
L
10
-c
x
show ur answer
pe
n and paper then take
Send ur answer in pe
n and paper don't rep
uted ur self down
PLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT
SOLVE BY HAND STEP BY STEP
4.- A beer at an unknown temperature is introduced into a refrigerator that has a constant temperature of 1°C. After 20 minutes, the temperature of the beer is 10°C, and after 40 minutes, the temperature of the beer is 6°C.
a) Determine the temperature at which the beer was placed inside the refrigerator.b) How long will it take for the beer to reach 2°C?
PLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT
SOLVE BY HAND STEP BY STEP
5.- It is known that the population of a certain community increases at a rate proportional to the number of people at any given moment. If the population doubled in 5 years:
a) How long will it take to triple?b) How long will it take to quadruple?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY