114. Exponential Probability Between 5:00 PM and 6:00 PM, cars arrive at Jiffy Lube at the rate of 9 cars per hour (0.15 car per minute). This formula from probability can be used to determine the probability that a car will arrive within t minutes of 5:00 PM: F ( t ) = 1 − e − 0.15 t (a) Determine the probability that a car will arrive within 15 minutes of 5:00 PM (that is, before 5:15 PM). (b) Determine the probability that a car will arrive within 30 minutes of 5:00 PM (before 5:30 PM). (c) What value does F approach as t becomes unbounded in the positive direction? (d) Graph F using a graphing utility. (e) Using INTERSECT, determine how many minutes are needed for the probability to reach 60% .
114. Exponential Probability Between 5:00 PM and 6:00 PM, cars arrive at Jiffy Lube at the rate of 9 cars per hour (0.15 car per minute). This formula from probability can be used to determine the probability that a car will arrive within t minutes of 5:00 PM: F ( t ) = 1 − e − 0.15 t (a) Determine the probability that a car will arrive within 15 minutes of 5:00 PM (that is, before 5:15 PM). (b) Determine the probability that a car will arrive within 30 minutes of 5:00 PM (before 5:30 PM). (c) What value does F approach as t becomes unbounded in the positive direction? (d) Graph F using a graphing utility. (e) Using INTERSECT, determine how many minutes are needed for the probability to reach 60% .
Solution Summary: The author explains that the probability of a car arriving within 15 minutes is 0.8946. The value of F approaches as t becomes unbounded in positive direction.
114. Exponential Probability Between 5:00 PM and 6:00 PM, cars arrive at Jiffy Lube at the rate of 9 cars per hour (0.15 car per minute). This formula from probability can be used to determine the probability that a car will arrive within t minutes of 5:00 PM:
(a) Determine the probability that a car will arrive within 15 minutes of 5:00 PM (that is, before 5:15 PM).
(b) Determine the probability that a car will arrive within 30 minutes of 5:00 PM (before 5:30 PM).
(c) What value does F approach as t becomes unbounded in the positive direction?
(d) Graph F using a graphing utility.
(e) Using INTERSECT, determine how many minutes are needed for the probability to reach
.
Write an integral that is approximated by the following Riemann sum. Substitute a
into the Riemann sum below where a is the last non-zero digit of your banner ID.
You do not need to evaluate the integral.
2000
(10
1
((10-a) +0.001) (0.001)
Each of the following statements is an attempt to show that a given series is convergent or
divergent using the Comparison Test (NOT the Limit Comparison Test.) For each statement, enter C
(for "correct") if the argument is valid, or enter | (for "incorrect") if any part of the argument is
flawed. (Note: if the conclusion is true but the argument that led to it was wrong, you must enter I.)
☐ 1. For all n > 1,
seriesΣ In(n)
In(n)
converges.
2, 1,
arctan(n)
the series arctan(n)
n³
☐ 4. For all n > 1,
123
converges.
1
n ln(n)
series In(n) diverges.
2n
.
and the seriesΣconverges, so by the Comparison Test,
2, 3, and the series converges, so by the Comparison Test, the
series-3
1
converges.
☐ 6. For all n > 2, In(n) >, and the series Σ converges, so by the Comparison Test, the
seriesΣ
In(n) converges.
Instructions.
"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."
Chapter 5 Solutions
Precalculus Enhanced with Graphing Utilities Plus MyLab Math with Pearson eText - Access Card Package (7th Edition) (Sullivan & Sullivan Precalculus Titles)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.