INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
14th Edition
ISBN: 9780133918922
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.2, Problem 8P
Draw the free-body diagram for the following problems.
a. The beam in Prob. 5–52.
b. The boy and diving board in Prob. 5–53.
c. The rod in Prob. 5–54.
d. The rod in Prob. 5-56
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pin-connected crane framework is loaded and supported, as shown. The member weights are post, 700 lb; boom, 800 lb; and brace, 600 lb. These weights may be considered to be acting at the midpoint of the respective members. Calculate the pin reactions at pins A, C, D, E and at the roller B
- Draw Free-body diagram.
- Solve most simpliest way, only solving for what you are asked for.
Show your complete solution and put whether it is clockwise (+) or counterclockwise (-) and if to the left or to the right. Also, draw again the figure. Thank you
4
Chapter 5 Solutions
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Ch. 5.2 - Draw the free-body diagram for the following...Ch. 5.2 - Draw the free-body diagram for the following...Ch. 5.2 - Draw the free-body diagram for the following...Ch. 5.2 - Draw the free-body diagram for the following...Ch. 5.2 - Draw the free-body diagram for the following...Ch. 5.2 - Draw the free-body diagram for the following...Ch. 5.2 - Draw the free-body diagram for the following...Ch. 5.2 - Draw the free-body diagram for the following...Ch. 5.2 - Draw the free-body diagram for the following...Ch. 5.4 - Draw the free body diagram of each object. Prob....
Ch. 5.4 - Determine the horizontal and vertical components...Ch. 5.4 - Determine the horizontal and vertical components...Ch. 5.4 - The truss is supported by a pin at A and a roller...Ch. 5.4 - Determine the components of reaction at the fixed...Ch. 5.4 - The 25 kg bar has a center of mass at G. If it is...Ch. 5.4 - Determine the reactions at the smooth contact...Ch. 5.4 - Determine the components of the support reactions...Ch. 5.4 - Determine the reactions at the supports. Prob....Ch. 5.4 - Determine the horizontal and vertical components...Ch. 5.4 - Determine the reactions at the supports. Prob....Ch. 5.4 - Determine the reactions at the supports. Prob....Ch. 5.4 - Determine the reactions at the supports. Prob....Ch. 5.4 - Determine the tension in the cable and the...Ch. 5.4 - The man attempts to a up port the toad of boards...Ch. 5.4 - Determine the components of reaction at the...Ch. 5.4 - The man has a weight W and stands at the center of...Ch. 5.4 - A uniform glass rod having a length L is placed in...Ch. 5.4 - The uniform rod AB has a mass of 40 kg. Determine...Ch. 5.4 - If the intensity of the distributed load acting on...Ch. 5.4 - If the roller at A and the pin at B can support a...Ch. 5.4 - The relay regulates voltage and current. Determine...Ch. 5.4 - Determine the reactions on the bent rod which is...Ch. 5.4 - The mobile crane is symmetrically supported by two...Ch. 5.4 - Determine the reactions acting on the smooth...Ch. 5.4 - A linear torsional spring deforms such that an...Ch. 5.4 - Determine the force P needed to pull the 50-kg...Ch. 5.4 - Determine the magnitude and direction of the...Ch. 5.4 - The operation of the fuel pump for an automobile...Ch. 5.4 - Determine the magnitude of force at the pin A and...Ch. 5.4 - The dimensions of a jib crane, which is...Ch. 5.4 - The dimensions of a jib crane, which is...Ch. 5.4 - The smooth pipe rests against the opening at the...Ch. 5.4 - The beam of negligible weight is supported...Ch. 5.4 - The cantilevered jib crane is used to support the...Ch. 5.4 - The cantilevered jib crane is used to support the...Ch. 5.4 - The bar of negligible weight is supported by two...Ch. 5.4 - Determine the stiffness k of each spring so that...Ch. 5.4 - The bulk head AD Is subjected to both water and...Ch. 5.4 - The boom supports the two vertical loads. Neglect...Ch. 5.4 - The boom is intended to support two vertical loads...Ch. 5.4 - The 10-kg uniform rod is pinned at end A. If It is...Ch. 5.4 - If the truck and its contents have a mass of 50 kg...Ch. 5.4 - Three uniform books each having a weight W and...Ch. 5.4 - Determine the reactions at the pin A and the...Ch. 5.4 - If rope BC will fail when the tension becomes 50...Ch. 5.4 - The rigid metal strip of negligible weight is used...Ch. 5.4 - The rigid metal strip of negligible weight is used...Ch. 5.4 - The cantilever footing is used to support a wail...Ch. 5.4 - The uniform beam has a weight Wand length l and is...Ch. 5.4 - A boy stands out at the end of the diving board,...Ch. 5.4 - The 30-N uniform rod has a length of l = 1 m. If s...Ch. 5.4 - The uniform rod has a length I and weight W. It is...Ch. 5.4 - I he uniform rod of length L and weight W is...Ch. 5.4 - Assuming that the foundation exerts a linearly...Ch. 5.4 - Assuming that the foundation exerts a linearly...Ch. 5.4 - If it is also subjected to a couple moment of 100...Ch. 5.4 - Determine the distance d for placement of the load...Ch. 5.4 - If d = 1 m, and = 30, determine me normal...Ch. 5.4 - The man attempts to pull the tour wheeler up the...Ch. 5.4 - Where is the best place to arrange most of the...Ch. 5.7 - Draw the free-body diagram of each object.Ch. 5.7 - In each case, write the moment equations about the...Ch. 5.7 - The uniform plate has a weight of 500 lb....Ch. 5.7 - Determine the reactions at the roller support A,...Ch. 5.7 - The rod is supported by smooth journal bearings at...Ch. 5.7 - Determine the support reactions at the smooth...Ch. 5.7 - Determine the force developed in the short link...Ch. 5.7 - Determine the components of reaction that the...Ch. 5.7 - Determine the tension each rope and the force that...Ch. 5.7 - If these components have weights WA = 45000 Wa =...Ch. 5.7 - Determine the components of reaction at the fixed...Ch. 5.7 - Determine the vertical reactions at the wheels C...Ch. 5.7 - Determine the components of reaction at A, the...Ch. 5.7 - Determine the tension in each of the three...Ch. 5.7 - Determine the components of reaction at hinges A...Ch. 5.7 - Determine me tension in each cable and the...Ch. 5.7 - The cables are attached to a smooth collar ring at...Ch. 5.7 - Determine the components of reaction at the...Ch. 5.7 - Determine the components of reaction at the...Ch. 5.7 - Determine the components of reaction at the...Ch. 5.7 - Determine the magnitude of F which will cause the...Ch. 5.7 - Determine the components of reaction at A and the...Ch. 5.7 - Determine the components of reaction at these...Ch. 5.7 - Determine the components or reaction at these...Ch. 5.7 - Compute the x, y, z components of reaction at the...Ch. 5.7 - Determine the magnitude of F2 which will cause the...Ch. 5.7 - At A the connection is with a ball-and-socket....Ch. 5.7 - If it is supported by a ball-and-socket joint at C...Ch. 5.7 - Determine the x, y, z components of reaction at...Ch. 5.7 - Determine the horizontal tension T in the belt on...Ch. 5.7 - Determine the horizontal tension T in the belt on...Ch. 5.7 - Determine the components of reaction at A and the...Ch. 5.7 - If the roller at 8 can sustain a maximum load of 3...Ch. 5.7 - Determine the reactions at the supports A and B...Ch. 5.7 - Determine the normal reaction at the roller A and...Ch. 5.7 - Determine the horizontal and vertical components...Ch. 5.7 - Determine the x, y, z components of reaction at...Ch. 5.7 - Determine the horizontal equilibrium force P that...Ch. 5.7 - Determine the x, y, z components of reaction at...Ch. 5.7 - Determine the x and z components of reaction at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Show your complete solution and put whether it is clockwise (+) or counterclockwise (-) and if to the left or to the right. Also, draw again the figure. Thank youarrow_forwardSHOW COMPLETE SOLUTION AND PLEASE WRITE ELIGIBLY (PLEASE ANSWER 4/3 AND 4/4 PLEASE!)arrow_forwardFor Probs. 1-3, (a) draw the free-body diagrams for the entire assembly (or structure) and each of its parts. Neglect friction and the weights of the members unless specified otherwise. Be sure to indicate all relevant dimensions. For each problem, (b) determine the total number of unknown forces and the total number of independent equilibrium equations. Problem 1 500 N 500 N 1 m 500 N (b) (c) Figure 1 Problem 2 -- Ift 4 ft -1.8 ft 100 lb F1.8 ft - 100 lb 100 lb (а) (b) (c)arrow_forward
- Read the problems carefully. Show your COMPLETE and NEAT solution. Box ALL intermediate and finalanswers, round them to the nearest thousandths (three decimal places). Do not forget to affix the corresponding units.arrow_forwardPlease provide all written work, thank you!arrow_forward3. Figure 3 shows a brake pedal assembly from a car. Under the action of an applied foot force, the pedal lever acts against the fixed pivot and transfers load to the brake cylinder via an actuation rod. The pedal lever is of hollow section, three-sided form with section dimensions as shown in the figure (Section A-A). Via consideration of the pedal lever as a free body, calculate the reactions acting at the fixed pivot and the 10 mm dia. pin. (hint-take the pin and the pivot as supports) Draw the bending moment diagram for the pedal lever and determine the maximum tensile and compressive stresses arising if a force of 1.3 kN is applied at the foot pedal as shown in Figure 3. (hint -exclude the areas of the holes) [Ans ot = 134 N/mm² oc = 215 N/mm*] i. ii. Fixed pivot 10 mm dia. pin 30 mm 5 mm 10 mm 3 mm Actuates brake throughout cylinder > 15 mm 1.3 kN Section A-A Floor pan Foot pedal force Pedal lever Figure 3 Brake pedal assembly from a car 100 200 mm mmarrow_forward
- Problem Statement Based on Problem 5-74 from the textbook. The bend rod is supported at A, B, and C by smooth journal bearings. Determine the components of reaction at the bearings if the rod is subjected to the force F. The bearings ar ein proper alignment and exert only force reactions on the rod. F=815m d=1.00m e=1.90 m f=2.20 m 30° 60° B d f 0.75 marrow_forward6-65 The crane and boom shown in Fig. 12,000 lb and 600 lb, respectively. When the boom is in the position shown, determine weigh The pin reaction at boom support A when the load be- ing lifted is 3600 lb. 12 fi B 12 ft 10 - 8 ft 30 6 ft 6 ft -9 ft-arrow_forwardProblem 4: Solve for internal reactions at pin C and D. pin comection roller Connaction NB. B 2' 2 3' 3' 3' 24016arrow_forward
- Draw also Free body diagram . The jib crane 5-37arrow_forwardBased on Problem 5-11 from the textbook. Determine the reactions at the supports. w=420 b= 2.9 m a= 3.4 m 4 a W b Barrow_forwardA member (AC) is supported by a pin at A and a roller at B. The horizontal component of reaction at pin A is.  Select one: a. 9 kN b. 4 kN c. 1 kN d. 8 kNarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Force | Free Body Diagrams | Physics | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4Bwwq1munB0;License: Standard YouTube License, CC-BY