5.43 and 5.44
Determine by direct integration the centroid of the area shown. Express your answer in terms of a and b.
Fig. P5.44
The centroid of shaded area in Fig. P5.44 by method of direct integration.
Answer to Problem 5.44P
Centroid is located at
Explanation of Solution
Refer the figure P5.44 and figure given below.
Write the equation for curve
Here,
Consider the point
Here,
Rewrite equation (I) by substituting
Rewrite the above equation in terms of
Rewrite equation (I) by substituting the above relation for
Divide the shaded region in P5.44 into two parts for the purpose of integration. Region
Consider the region
Consider a rectangular differential area element in the region. Write the expression for the x-coordinate of center of mass of differential area element.
Here,
Write the expression for the y-coordinate of center of mass of differential area element in region
Here,
Rewrite the above relation by substituting
Write the expression to calculate the differential area element in
Here,
Rewrite the above relation by substituting
Consider the region
Write the expression for the x-coordinate of center of mass of differential area element in region
Here,
Write the expression for the y-coordinate of center of mass of differential area element in region
Here,
Calculate the slope of
Here,
Write the equation of
Rewrite the above equation by substituting
Rewrite equation (IV) by substituting
Write the expression for
Rewrite the above relation by substituting
Write the equation to calculate the total area of shaded region in P5.44.
Here,
Rewrite the above equation by substituting equation (III) and (VI).
Write the expression for
Rewrite the above equation by substituting equation (III) and (VI).
Write the expression for
Rewrite the above equation by substituting equations (II), (III), (V) and (VI).
Write the expression for first moment of whole area about y-axis.
Here,
Rewrite the above relation by substituting
Rewrite the above relation in terms of
Write the expression for first moment of whole area about x-axis.
Here,
Rewrite the above relation in terms of
Therefore, the centroid is located at
Want to see more full solutions like this?
Chapter 5 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- I need handwritten solution with sketches for eacharrow_forwardGiven answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward(b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forward
- Q1: For the following force system, find the moments with respect to axes x, y, and zarrow_forwardQ10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q3: Find the resultant of the force system.arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward(L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY