Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9781259639272
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 5.4, Problem 5.133P

Locate the centroid of the section shown, which was cut f a thin circular pipe by two oblique planes.

Chapter 5.4, Problem 5.133P, Locate the centroid of the section shown, which was cut f a thin circular pipe by two oblique

Fig. P5.133

(a)

Expert Solution
Check Mark
To determine

The location of the centre of gravity of the bowl.

Answer to Problem 5.133P

The location of the centre of gravity of the bowl is x¯=0, y¯=121.9mm and z¯=12R.

Explanation of Solution

Refer Fig. P5.132 and Fig. 1.

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 5.4, Problem 5.133P , additional homework tip  1

For the coordinate axis given below, using the symmetry of the diagram, determine the x and z coordinates of the centre of gravity.

x¯=0z¯=0

The bowl can be assumed as a shell, where the centre of gravity coincides with the centroid of the shell.

The element of area is obtained by rotating the arc ds about the y-axis for the walls of the bowl.

Write the expression for the area of the element.

dAwall=(2πRsinθ)(Rdθ) (I)

Here, dAwall is the area of the element and R is the radius of the shell.

Write the expression for y coordinate of the centroid of the element.

(y¯EL)wall=Rcosθ (II)

Here, y¯EL is the y coordinate of the centroid of the element.

Write the expression for y¯wallAwall of the element.

y¯wallAwall=(y¯EL)walldA (III)

Write the expression for y coordinate of the centre of gravity.

y¯=Σy¯AΣA (IV)

Here, Σy¯A is the sum of the product of the y coordinate and the area and ΣA is the sum of the areas.

Conclusion:

Calculate the area using equation (I).

Awall=π/6π/2dA=π/6π/22πR2sinθdθ=2πR2[cosθ]π/6π/2=π3R2 (V)

Substitute (I) and (II) in (III).

y¯wallAwall=π/6π/2(Rcosθ)(2πR2sinθdθ)=πR3[cos2θ]π/6π/2=34πR3 (VI)

From figure 1, find the area of the base and distance of the centroid of the base to the y axis.

Abase=π4R2y¯base=32R (VII)

Substitute equations (V), (VI) and (VII) in equation (IV).

y¯=(34πR3)+(π4R2)(32R)π3R2+π4R2=0.48763R (VIII)

Substitute 250mm for R in equation (VIII) to find the y coordinate of the centre of gravity.

y¯=(0.48763)(250mm)=121.9mm

Therefore, the location of the centre of gravity of the bowl is x¯=0, y¯=121.9mm and z¯=12R.

(b)

Expert Solution
Check Mark
To determine

The location of the centre of gravity of the punch.

Answer to Problem 5.133P

The location of the centre of gravity of the bowl is x¯=0, y¯=90.2mm and z¯=12R.

Explanation of Solution

Refer Fig. P5.132 and Fig. 2.

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 5.4, Problem 5.133P , additional homework tip  2

For the coordinate axis given below, using the symmetry of the diagram, determine the x and z coordinates of the centre of gravity.

x¯=0z¯=0

The punch can be assumed as homogenous, where the centre of gravity coincides with the centroid of the volume.

The element of volume of the disk has radius x and thickness dy.

Find the expression for x2 of the element from the equation of the curve.

x2+y2=R2x2=R2y2

Write the expression for the volume of the element.

dV=πx2dy=π(R2y2)dy (IX)

Here, R is the radius of the punch, and y is distance of the element from the top.

Write the expression for y coordinate of the centre of gravity.

y¯=y¯ELdVV (X)

Conclusion:

Calculate the volume using equation (IX).

V=3/2R0dV=3/2R0π(R2y2)dy=π[R2y13y3]3/2R0=π[R2(32R)13(32R)3]=38π3R3 (XI)

Find y¯ELdV.

y¯ELdV=3/2R0y[π(R2y2)dy]=π[12R2y214y4]3/2R0=π[12R2(32R)214(32R)4]=1564πR4 (XII)

Substitute equations (XI), and (XII) in equation (X).

y¯=1564πR438π3R3=583R (XIII)

Substitute 250mm for R in equation (XIII) to find the y coordinate of the centre of gravity.

y¯=583(250mm)=90.2mm

Therefore, the location of the centre of gravity of the bowl is x¯=0, y¯=90.2mm and z¯=12R.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Determine by direct integration the centroid of the area shown. Express your answer in terms of and a and b.
Locate the centroid of the plane area shown
Locate the centroid of the volume obtained by rotating the shaded area about the xaxis.

Chapter 5 Solutions

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics

Ch. 5.1 - Prob. 5.11PCh. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Prob. 5.13PCh. 5.1 - 5.10 through 5.15 Locate the centroid of the plane...Ch. 5.1 - Prob. 5.15PCh. 5.1 - PROBLEM 5.16 Determine the y coordinate of the...Ch. 5.1 - Show that as r1 approaches r2, the location of the...Ch. 5.1 - Prob. 5.18PCh. 5.1 - Prob. 5.19PCh. 5.1 - Prob. 5.20PCh. 5.1 - Prob. 5.21PCh. 5.1 - The horizontal x-axis is drawn through the...Ch. 5.1 - PROBLEM 5.23 The first moment of the shaded area...Ch. 5.1 - Prob. 5.24PCh. 5.1 - Prob. 5.25PCh. 5.1 - Prob. 5.26PCh. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - Prob. 5.28PCh. 5.1 - The frame for a sign is fabricated from thin, flat...Ch. 5.1 - The homogeneous wire ABCD is bent as shown and is...Ch. 5.1 - The homogeneous wire ABCD is bent as shown and is...Ch. 5.1 - Prob. 5.32PCh. 5.1 - Knowing that the distance h has been selected to...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.37 through 5.39 Determine by direct integration...Ch. 5.2 - 5.37 through 5.39 Determine by direct integration...Ch. 5.2 - Prob. 5.39PCh. 5.2 - 5.40 and 5.41 Determine by direct integration the...Ch. 5.2 - 5.40 and 5.41 Determine by direct integration the...Ch. 5.2 - 5.42 Determine by direct integration the centroid...Ch. 5.2 - 5.43 and 5.44 Determine by direct integration the...Ch. 5.2 - 5.43 and 5.44 Determine by direct integration the...Ch. 5.2 - 5.45 and 5.46 A homogeneous wire is bent into the...Ch. 5.2 - 5.45 and 5.46 A homogeneous wire is bent into the...Ch. 5.2 - A homogeneous wire is bent into the shape shown....Ch. 5.2 - 5.48 and 5.49 Determine by direct integration the...Ch. 5.2 - Prob. 5.49PCh. 5.2 - Prob. 5.50PCh. 5.2 - Determine the centroid of the area shown when a =...Ch. 5.2 - Prob. 5.52PCh. 5.2 - 5.53 Determine the volume and the surface area of...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Prob. 5.55PCh. 5.2 - Prob. 5.56PCh. 5.2 - Prob. 5.57PCh. 5.2 - Prob. 5.58PCh. 5.2 - Prob. 5.59PCh. 5.2 - Determine the capacity, in liters, of the punch...Ch. 5.2 - Determine the volume and total surface area of the...Ch. 5.2 - Prob. 5.62PCh. 5.2 - Determine the total surface area of the solid...Ch. 5.2 - Prob. 5.64PCh. 5.2 - The shade for a wall-mounted light is formed from...Ch. 5.3 - 5.66 and 5.67 For the beam and loading shown,...Ch. 5.3 - Prob. 5.67PCh. 5.3 - Prob. 5.68PCh. 5.3 - Prob. 5.69PCh. 5.3 - Prob. 5.70PCh. 5.3 - Prob. 5.71PCh. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - Determine (a) the distance a so that the vertical...Ch. 5.3 - Prob. 5.75PCh. 5.3 - 5.76 Determine the reactions at the beam supports...Ch. 5.3 - Prob. 5.77PCh. 5.3 - The beam AB supports two concentrated loads and...Ch. 5.3 - For the beam and loading of Prob. 5.78, determine...Ch. 5.3 - The cross section of a concrete dam is as shown....Ch. 5.3 - Prob. 5.81PCh. 5.3 - The dam for a lake is designed to withstand the...Ch. 5.3 - Prob. 5.83PCh. 5.3 - 5.84 An automatic valve consists of a 9 × 9-in....Ch. 5.3 - 5.85 An automatic valve consists of a 9 × 9-in....Ch. 5.3 - Prob. 5.86PCh. 5.3 - The 3 4-m side of an open tank is hinged at its...Ch. 5.3 - Prob. 5.88PCh. 5.3 - A 0.5 0.8-m gate AB is located at the bottom of a...Ch. 5.3 - Prob. 5.90PCh. 5.3 - Prob. 5.91PCh. 5.3 - Prob. 5.92PCh. 5.3 - Prob. 5.93PCh. 5.3 - Prob. 5.94PCh. 5.3 - The square gate AB is held in the position shown...Ch. 5.4 - Consider the composite body shown. Determine (a)...Ch. 5.4 - Prob. 5.97PCh. 5.4 - Prob. 5.98PCh. 5.4 - Prob. 5.99PCh. 5.4 - Prob. 5.100PCh. 5.4 - Prob. 5.101PCh. 5.4 - Prob. 5.102PCh. 5.4 - Prob. 5.103PCh. 5.4 - For the machine element shown, locate the y...Ch. 5.4 - For the machine element shown, locate the x...Ch. 5.4 - 5.106 and 5.107 Locate the center of gravity of...Ch. 5.4 - 5.106 and 5.107 Locate the center of gravity of...Ch. 5.4 - A corner reflector for tracking by radar has two...Ch. 5.4 - A wastebasket, designed to fit in the corner of a...Ch. 5.4 - Prob. 5.110PCh. 5.4 - Prob. 5.111PCh. 5.4 - Prob. 5.112PCh. 5.4 - Prob. 5.113PCh. 5.4 - A thin steel wire with a uniform cross section is...Ch. 5.4 - The frame of a greenhouse is constructed from...Ch. 5.4 - Locate the center of gravity of the figure shown,...Ch. 5.4 - PROBLEM 5.117 Locate the center of gravity of the...Ch. 5.4 - A scratch awl has a plastic handle and a steel...Ch. 5.4 - Prob. 5.119PCh. 5.4 - PROBLEM 5.120 A brass collar, of length 2.5 in.,...Ch. 5.4 - Prob. 5.121PCh. 5.4 - Prob. 5.122PCh. 5.4 - Prob. 5.123PCh. 5.4 - Prob. 5.124PCh. 5.4 - PROBLEM 5.125 Locate the centroid of the volume...Ch. 5.4 - PROBLEM 5.126 Locate the centroid of the volume...Ch. 5.4 - Prob. 5.127PCh. 5.4 - Prob. 5.128PCh. 5.4 - PROBLEM 5.129 Locate the centroid of the volume...Ch. 5.4 - Prob. 5.130PCh. 5.4 - Prob. 5.131PCh. 5.4 - PROBLEM 5.132 The sides and the base of a punch...Ch. 5.4 - Locate the centroid of the section shown, which...Ch. 5.4 - Prob. 5.134PCh. 5.4 - Prob. 5.135PCh. 5.4 - Alter grading a lot, a builder places four stakes...Ch. 5 - 5.137 and 5.138 Locate the centroid of the plane...Ch. 5 - 5.137 and 5.138 Locate the centroid of the plane...Ch. 5 - Prob. 5.139RPCh. 5 - Prob. 5.140RPCh. 5 - Prob. 5.141RPCh. 5 - Prob. 5.142RPCh. 5 - Determine the reactions at the supports for the...Ch. 5 - A beam is subjected to a linearly distributed...Ch. 5 - Prob. 5.145RPCh. 5 - Prob. 5.146RPCh. 5 - An 8-in.-diameter cylindrical duct and a 4 8-in....Ch. 5 - Three brass plates are brazed to a steel pipe to...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY