Mechanics of Materials
11th Edition
ISBN: 9780137605460
Author: Russell C. Hibbeler
Publisher: Pearson Education (US)
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5.10, Problem 136P
Plot the shear-stress distribution acting along a radial line if it is subjected to a torque of T = 20 kN·m. What is the residual stress distribution in the shaft when the torque is removed?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Part A
The solid shaft cross-sections shown are subjected to the externally applied torques shown. Compare the corresponding shear stresses developed in each shaft at point P.
P
P
2 T
Rank the solid shafts from the largest shear stress at P to the smallest shear stress at P. (For example, 4> 3 = 1 > 2).
0.5 T
What is the minimum diameter of a solid steel shaft that will not twist through more than 3˚ in a6-m length when subjected to a torque of 15 KN-m? What maximum shearing stress isdeveloped? Use G=85 GPa.
Figure 2 shows a solid shaft consisting of two prismatic circular parts in equilibrium under the
torques applied to the pulleys fastened to it. Give that the diameter for part AB and BC are 200
mm and 120 mm, respectively.
(a) Determine the torque, TR on the shaft.
(b) State the segment at which the maximum shearing stress occurs. Verify your answer by
shear stress analysis.
d- 200 mm
d- 120 mm
TA= 36 kN.m
Te=14 kN.m
Ta
C
Figure 2: Solid shaft with pulleys
Chapter 5 Solutions
Mechanics of Materials
Ch. 5.3 - The solid circular shaft is subjected to an...Ch. 5.3 - The hollow circular shaft is subjected to an...Ch. 5.3 - The shaft is hollow from A to B and solid from B...Ch. 5.3 - Determine the maximum shear stress in the...Ch. 5.3 - Determine the maximum shear stress in the shaft at...Ch. 5.3 - Determine the shear stress a: point A on the...Ch. 5.3 - The solid 50-mm-diameter shaft is subjected to the...Ch. 5.3 - The gear motor can develop 3 hp when it turns at...Ch. 5.3 - The solid shaft of radius r is subjected to a...Ch. 5.3 - The solid shaft of radius r is subjected to a...
Ch. 5.3 - Prob. 3PCh. 5.3 - The copper pipe has an outer diameter of 40 mm and...Ch. 5.3 - The copper pipe has an outer diameter of 2.50 in....Ch. 5.3 - The link acts as part of the elevator control for...Ch. 5.3 - The assembly consists of two sections of...Ch. 5.3 - A steel tube having an outer diameter of 2.5 in....Ch. 5.3 - The rod has a diameter of 1 in. and a weight of 10...Ch. 5.3 - The rod has a diameter of 1 in. and a weight of 15...Ch. 5.3 - Prob. 20PCh. 5.3 - The 60-mm-diameter solid shaft is subjected to the...Ch. 5.3 - The 60-mm-diameter solid shaft is subjected to the...Ch. 5.3 - The solid shaft is subjected to the distributed...Ch. 5.3 - If the tube is made from a material having an...Ch. 5.3 - Prob. 29PCh. 5.3 - The motor delivers 50 hp while turning at a...Ch. 5.3 - The solid steel shaft AC has a diameter of 25 mm...Ch. 5.3 - Prob. 35PCh. 5.4 - The 60 mm-diameter steel shaft is subjected to the...Ch. 5.4 - Prob. 10FPCh. 5.4 - The hollow 6061-T6 aluminum shaft has an outer and...Ch. 5.4 - A series of gears are mounted on the...Ch. 5.4 - The 80-mm-diameter shaft is made of steel. If it...Ch. 5.4 - The 80-mm-diameter shaft is made of steel. If it...Ch. 5.4 - The propellers of a ship are connected to an A-36...Ch. 5.4 - Show that the maximum shear strain in the shaft is...Ch. 5.4 - Determine the angle of twist of end B with respect...Ch. 5.4 - Determine the maximum allowable torque T. Also,...Ch. 5.4 - If the allowable shear stress is allow = 80 MPa,...Ch. 5.4 - Determine the angle of twist of the end A.Ch. 5.4 - The hydrofoil boat has an A992 steel propeller...Ch. 5.4 - Also, calculate the absolute maximum shear stress...Ch. 5.4 - If a torque of T = 50 N m is applied to the bolt...Ch. 5.4 - If a torque of T= 50N m is applied to the bolt...Ch. 5.4 - If the motor delivers 4 MW of power to the shaft...Ch. 5.4 - Determine the angle of twist at the free end A of...Ch. 5.5 - Gst = 75 GPa.Ch. 5.5 - The shaft is made of L2 tool steel, has a diameter...Ch. 5.5 - Each has a diameter of 25 mm and they are...Ch. 5.5 - Each has a diameter of 25 mm and they are...Ch. 5.5 - It is fixed at its ends and subjected to a torque...Ch. 5.5 - 5–89. Determine the absolute maximum shear stress...Ch. 5.7 - If the yield stress for brass is Y = 205 MPa,...Ch. 5.7 - By what percentage is the shaft of circular cross...Ch. 5.7 - Prob. 97PCh. 5.7 - Also, find the angle of twist of end B. The shaft...Ch. 5.7 - Also, find the corresponding angle of twist at end...Ch. 5.7 - Prob. 110PCh. 5.7 - Determine the average shear stress in the tube if...Ch. 5.7 - By what percentage is the torsional strength...Ch. 5.7 - Prob. 114PCh. 5.7 - Prob. 115PCh. 5.7 - Prob. 119PCh. 5.10 - Prob. 121PCh. 5.10 - If the radius of the fillet weld connecting the...Ch. 5.10 - Prob. 125PCh. 5.10 - Determine the radius of the elastic core produced...Ch. 5.10 - Prob. 128PCh. 5.10 - Determine the torque T needed to form an elastic...Ch. 5.10 - Determine the torque applied to the shaft.Ch. 5.10 - Prob. 131PCh. 5.10 - Determine the ratio of the plastic torque Tp to...Ch. 5.10 - Determine the applied torque T, which subjects the...Ch. 5.10 - Determine the radius of its elastic core if it is...Ch. 5.10 - Plot the shear-stress distribution acting along a...Ch. 5.10 - If the material obeys a shear stress-strain...Ch. 5.10 - It is made of an elastic perfectly plastic...Ch. 5.10 - Prob. 139PCh. 5.10 - Prob. 140PCh. 5.10 - Prob. 142PCh. 5.10 - Prob. 143PCh. 5 - The shaft is made of A992 steel and has an...Ch. 5 - The shaft is made of A992 steel and has an...Ch. 5 - Determine the shear stress at the mean radius p =...Ch. 5 - If the thickness of its 2014-T6-aluminum skin is...Ch. 5 - Determine which shaft geometry will resist the...Ch. 5 - If couple forces P = 3 kip are applied to the...Ch. 5 - If the allowable shear stress for the aluminum is...Ch. 5 - Determine the angle of twist of its end A if it is...Ch. 5 - This motion is caused by the unequal belt tensions...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A motor driving a solid circular steel shaft with diameter d = 1.5 in, transmits 50 hp to a gear at B, The allowable shear stress in the steel is 6000 psi. Calculate the required speed of rotation (number of revolutions per minute) so that the shear stress in the shaft does not exceed the allowable limit.arrow_forwardA thin-walled rectangular tube has uniform thickness t and dimensions a x b to the median line of the cross section (see figure). How does the shear stress in the tube vary with the ratio = a/b if the total length Lmof the median line of the cross section and the torque T remain constant? From your results, show that the shear stress is smallest when the tube is square (ß = 1).arrow_forwardA propeller shaft for a small yacht is made of a solid steel bar 104 mm in diameter. The allowable stress in shear is 48 MPa, and the allowable rate of twist is 2.0° in 3.5 meters. (a) Assuming that the shear modulus of elasticity is G = 80 GPa, determine the maximum torque that can be applied to the shaft. (b) Repeat part (a) if the shaft is now hollow with an inner diameter of 5d18. Compare values to corresponding values from part (a).arrow_forward
- A solid circular shaft AB of diameter d is fixed against rotation at both ends (sec figure), A circular disk is attached to the shaft at the location shown. What is the largest permissible angle of rotation 0max of the disk if the allowable shear stress in the shaft is Tallow? [Assume that a >b. Also, use Eqs. (3-50a and b) of Example 3-9 to obtain the reactive torques.]arrow_forwardProblem 1: A circular shaft with a diameter of 100 mm and a length of 2 meters is subjected to a torsional moment of 500 Nm. The shaft is made of a material with a shear modulus of 80 GPa. Determine the maximum shear stress and the angle of twist along the length of the shaft. Problem 2: A solid circular shaft of length 3 meters is made of a material with a shear modulus of 60 GPa. The shaft has a diameter of 80 mm and is subjected to a torque of 600 Nm. Due to manufacturing constraints, the maximum allowable shear stress for the material is 60 MPa. Determine if the shaft design is safe and, if not, suggest an alternative design to meet the given constraints.arrow_forwardSteel bar whose length of 1.31 m and a radius of 13 mm is subjected to torque which produce a shear. If the angle of twist is 30° and shear modulus of 203 GPa. Determine the torque applied.arrow_forward
- What is the minimum diameter of a solid steel shaft that will not twist through more than 3.18 degrees in a 6 m length when subjected to a torque of 14KN-m. What maximum shearing stress is developed? Use G=83GN/m^2.arrow_forwardA compound shaft consists of two pipe segments. Segment (1) has an outside diameter of 212 mm and a wall thickness of 9 mm. Segment (2) has an outside diameter of 139 mm and a wall thickness of 11 mm. The shaft is subjected to torques TB = 47 kN-m and Tc = 24 kN-m, which act in the directions shown. Determine the maximum shear stress magnitudes 7₁, 72 in each shaft segment. Answers: T1 = i T2 = i (1) (2) MPa. MPa.arrow_forwardA solid shaft is subjected to a twisting moment of 350 kNm. If the angle of twist is 5° per meter of the shaft and the shear stress is not to exceed 350 MPa. Determine the suitable shaft diameter by comparing the strength design and rigidity design. Also, determine the maximum shear strain acting on the shaft. Take G =225 GPa.arrow_forward
- A tubular steel shaft transmits a power of P = 450 hp at a speed of 3000 rpm. Determine the maximum shear stress produced in the shaft if the outside diameter is D = 2.25 in. and the wall thickness is t = 0.150 in. Calculate the torque T in the shaft. T= 788 Calculate the polar moment of inertia J of the shaft. Answer: J = i lb-ft. Answer: Tmax=i in.4. Determine the maximum shear stress Tmax in the shaft. ! psi.arrow_forwardThe compound shaft carries the two torques shown. The shear moduli are 28 GPa for aluminum, 83 GPa for steel, and 35 Gpa for bronze. If T = 1168.7 Nm, U = 4515 Nm, x = 3.01 m, y = 2.36 m, z = 1.35 m, d = 90 mm, and e = 83 mm, find the angle of rotation of the free end of the shaft. Round off the final answer to two decimal places. U T Aluminum Steel Bronzearrow_forwardA shaft required to transmit 50kW of power will be running at 100rev/min. The maximum twist in 3m length of the shaft is limited to 1.5 degree. If the maximum torque is 30 percent more than mean or average torque. Assume entirely elastic action and take modulus of rigidity for the shaft material G = 135 GN/?2. Determine the following:a. Diameter of the shaft.b. Maximum shear stress developed in the shaft. I need answer ASAP. Thank you!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Everything About TRANSVERSE SHEAR in 10 Minutes!! - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=4x0E9yvzfCM;License: Standard Youtube License