<LCPO> VECTOR MECH,STAT+DYNAMICS
<LCPO> VECTOR MECH,STAT+DYNAMICS
12th Edition
ISBN: 9781265566296
Author: BEER
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 5.1, Problem 5.29P

The frame for a sign is fabricated from thin, flat steel bar stock of mass per unit length 4.73 kg/m. The frame is supported by a pin at C and by a cable AB. Determine (a) the tension in the cable, (b) the reaction at C.

Chapter 5.1, Problem 5.29P, The frame for a sign is fabricated from thin, flat steel bar stock of mass per unit length 4.73

(a)

Expert Solution
Check Mark
To determine

The tension in the cable.

Answer to Problem 5.29P

The tension in the cable is TBA=125.3N_.

Explanation of Solution

The diagram for the centre of gravity is depicted below:

<LCPO> VECTOR MECH,STAT+DYNAMICS, Chapter 5.1, Problem 5.29P , additional homework tip  1

Write the equation of x-coordinate of the centre of gravity,

X¯ΣL=Σx¯L (I)

Here, the area is Σx¯L, the x-coordinate is X¯, the total length ΣL.

Write the equation of weight,

W=(m'ΣL)g (II)

Here, the weight is W, the mass per unit length is (m'ΣL), the gravitational acceleration is g.

Write the equation of momentum at equilibrium,

r1[(3/5)TBA][r2W]=0 (III)

Conclusion:

 L(m)x¯(m)x¯L(m2)
11.350.6750.91125
20.60.30.18
30.7500
40.750.20.15
5(π/2)(0.75)=1.17811.077461.26936
Σ4.62810 2.5106

Substitute 4.62810m for ΣL, 2.5106m2 for Σx¯L in Equation (I).

X¯(4.62810m)=2.5106m2X¯=0.54247m

Substitute 4.73kg/m for m', 4.62810m for ΣL, 9.8m/s2 for g in Equation (II).

W=[(4.73kg/m)(4.62810m)](9.8m/s2)=214.75N

Substitute, 1.55m for r1, 0.54247m for r2, 214.75N for W.

(1.55m)[(3/5)TBA][(0.54247m)(214.75N)]=0TBA=125.3N

Thus, The tension in the cable is TBA=125.3N_.

(b)

Expert Solution
Check Mark
To determine

The reaction at C.

Answer to Problem 5.29P

The reaction at C is 137.0N at an angle 56.7°_.

Explanation of Solution

The diagram for the reaction is depicted below:

<LCPO> VECTOR MECH,STAT+DYNAMICS, Chapter 5.1, Problem 5.29P , additional homework tip  2

Refer fig 2.

Write the equation of reaction along x-axis.

Cx35(TBA)=0 (IV)

Here, the reaction along x-axis is Cx.

Write the equation of reaction along y-axis.

Cy+45(TBA)W=0 (V)

Here, the reaction along y-axis is Cy.

Write the expression for the magnitude of the reaction at C,

C=Cx2+Cy2 (VI)

Here, C is the magnitude of reaction.

Write the equation of the direction of the reaction,

θ=tan1(CyCx) (VII)

Conclusion:

Substitute, 125.264N for TBA in equation (IV),

Cx35(125.64N)=0Cx=75.158N

Substitute, 125.264N for TBA, (275/25)P for R in equation (II)

Cy+45(125.264N)(214.75N)=0Cy=114.539N

Substitute, 75.158N for Cx, 114.539N for Cy in equation (VI),

C=(75.158N)2+(114.539N)2=137.0N

Substitute, 75.158N for Cx, 114.539N for Cy in equation (VII)

θ=tan1(114.539N75.158N)=56.7°

Thus, the reaction at C is 137.0N at an angle 56.7°_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The frame for a sign is fabricated from thin, flat steel bar stock of mass per unit length 4.73 kg/m. The frame is supported by a pin at C and by a cable AB. Determine (a) the tension in the cable, (b) the reaction at C.
A 260-kg uniform rectangular plate is supported in the position shown in the figure by hinges A and B and by a cable DCE that passes over a frictionless hook at C. Assume that the tension is the same in both parts of the cable and that hinge B does not exert any axial thrust. 450 mm 90 mm 690 mm A The reaction at A is ( The reaction at Bis 960 mm C 270 mm 90 mm B E 675 mm Determine the reactions at A and B. Round the final answer to one decimal place. N) i+ N) k. N)j + N)j + N) k. x
4.174 The weight W = 6 kN hangs from the cable which passes over the pulley at F. Neglecting the weights of the bars and the pulley, determine the magnitude of the pin reaction at D.

Chapter 5 Solutions

<LCPO> VECTOR MECH,STAT+DYNAMICS

Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - PROBLEM 5.16 Determine the y coordinate of the...Ch. 5.1 - Show that as r1 approaches r2, the location of the...Ch. 5.1 - Prob. 5.18PCh. 5.1 - Prob. 5.19PCh. 5.1 - A built-up beam is constructed by nailing seven...Ch. 5.1 - The horizontal x axis is drawn through the...Ch. 5.1 - The horizontal x-axis is drawn through the...Ch. 5.1 - PROBLEM 5.23 The first moment of the shaded area...Ch. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - Prob. 5.26PCh. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - Prob. 5.28PCh. 5.1 - The frame for a sign is fabricated from thin, flat...Ch. 5.1 - The homogeneous wire ABCD is bent as shown and is...Ch. 5.1 - The homogeneous wire ABCD is bent as shown and is...Ch. 5.1 - Prob. 5.32PCh. 5.1 - Knowing that the distance h has been selected to...Ch. 5.2 - Determine by direct integration the centroid of...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.37 through 5.39 Determine by direct integration...Ch. 5.2 - 5.37 through 5.39 Determine by direct integration...Ch. 5.2 - Prob. 5.39PCh. 5.2 - 5.40 and 5.41 Determine by direct integration the...Ch. 5.2 - 5.40 and 5.41 Determine by direct integration the...Ch. 5.2 - 5.42 Determine by direct integration the centroid...Ch. 5.2 - 5.43 and 5.44 Determine by direct integration the...Ch. 5.2 - 5.43 and 5.44 Determine by direct integration the...Ch. 5.2 - 5.45 and 5.46 A homogeneous wire is bent into the...Ch. 5.2 - 5.45 and 5.46 A homogeneous wire is bent into the...Ch. 5.2 - A homogeneous wire is bent into the shape shown....Ch. 5.2 - 5.48 and 5.49 Determine by direct integration the...Ch. 5.2 - Prob. 5.49PCh. 5.2 - Prob. 5.50PCh. 5.2 - Determine the centroid of the area shown when a =...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume of the solid generated by...Ch. 5.2 - Prob. 5.57PCh. 5.2 - Prob. 5.58PCh. 5.2 - Prob. 5.59PCh. 5.2 - Determine the capacity, in liters, of the punch...Ch. 5.2 - Determine the volume and total surface area of the...Ch. 5.2 - Prob. 5.62PCh. 5.2 - Determine the total surface area of the solid...Ch. 5.2 - Determine the volume of the brass collar obtained...Ch. 5.2 - The shade for a wall-mounted light is formed from...Ch. 5.3 - 5.66 and 5.67 For the beam and loading shown,...Ch. 5.3 - 5.66 and 5.67 For the beam and loading shown,...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - 5.68 through Determine the reactions at the beam...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - 5.68 through Determine the reactions at the beam...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - Determine (a) the distance a so that the vertical...Ch. 5.3 - Prob. 5.75PCh. 5.3 - Determine the reactions at the beam supports for...Ch. 5.3 - Determine (a) the distributed load w0 at the end D...Ch. 5.3 - The beam AB supports two concentrated loads and...Ch. 5.3 - For the beam and loading of Prob. 5.78, determine...Ch. 5.3 - The cross section of a concrete dam is as shown....Ch. 5.3 - Prob. 5.81PCh. 5.3 - The dam for a lake is designed to withstand the...Ch. 5.3 - Prob. 5.83PCh. 5.3 - The friction force between a 6 6-ft square sluice...Ch. 5.3 - A freshwater marsh is drained to the ocean through...Ch. 5.3 - Prob. 5.86PCh. 5.3 - The 3 4-m side of an open tank is hinged at its...Ch. 5.3 - Prob. 5.88PCh. 5.3 - A 0.5 0.8-m gate AB is located at the bottom of a...Ch. 5.3 - Prob. 5.90PCh. 5.3 - Prob. 5.91PCh. 5.3 - Prob. 5.92PCh. 5.3 - Prob. 5.93PCh. 5.3 - Prob. 5.94PCh. 5.3 - The square gate AB is held in the position shown...Ch. 5.4 - Consider the composite body shown. Determine (a)...Ch. 5.4 - A cone and a cylinder of the same radius a and...Ch. 5.4 - Determine the location of the center of gravity of...Ch. 5.4 - Prob. 5.99PCh. 5.4 - For the stop bracket shown, locate the x...Ch. 5.4 - Fig. P5.100 and P5.101 5.101 For the stop bracket...Ch. 5.4 - For the machine element shown, locate the x...Ch. 5.4 - Fig. P5.102 and P5.103 5.103 For the machine...Ch. 5.4 - For the machine element shown, locate the y...Ch. 5.4 - For the machine element shown, locate the x...Ch. 5.4 - 5.106 and 5.107 Locate the center of gravity of...Ch. 5.4 - 5.106 and 5.107 Locate the center of gravity of...Ch. 5.4 - A corner reflector for tracking by radar has two...Ch. 5.4 - A wastebasket, designed to fit in the corner of a...Ch. 5.4 - Prob. 5.110PCh. 5.4 - Prob. 5.111PCh. 5.4 - Prob. 5.112PCh. 5.4 - Locate the center of gravity of the sheet-metal...Ch. 5.4 - A thin steel wire with a uniform cross section is...Ch. 5.4 - The frame of a greenhouse is constructed from...Ch. 5.4 - Locate the center of gravity of the figure shown,...Ch. 5.4 - PROBLEM 5.117 Locate the center of gravity of the...Ch. 5.4 - A scratch awl has a plastic handle and a steel...Ch. 5.4 - Prob. 5.119PCh. 5.4 - PROBLEM 5.120 A brass collar, of length 2.5 in.,...Ch. 5.4 - Prob. 5.121PCh. 5.4 - Prob. 5.122PCh. 5.4 - Prob. 5.123PCh. 5.4 - Prob. 5.124PCh. 5.4 - PROBLEM 5.125 Locate the centroid of the volume...Ch. 5.4 - PROBLEM 5.126 Locate the centroid of the volume...Ch. 5.4 - Prob. 5.127PCh. 5.4 - Prob. 5.128PCh. 5.4 - PROBLEM 5.129 Locate the centroid of the volume...Ch. 5.4 - Prob. 5.130PCh. 5.4 - Prob. 5.131PCh. 5.4 - PROBLEM 5.132 The sides and the base of a punch...Ch. 5.4 - Locate the centroid of the section shown, which...Ch. 5.4 - Prob. 5.134PCh. 5.4 - Prob. 5.135PCh. 5.4 - Alter grading a lot, a builder places four stakes...Ch. 5 - 5.137 and 5.138 Locate the centroid of the plane...Ch. 5 - 5.137 and 5.138 Locate the centroid of the plane...Ch. 5 - Prob. 5.139RPCh. 5 - Prob. 5.140RPCh. 5 - Prob. 5.141RPCh. 5 - Prob. 5.142RPCh. 5 - Determine the reactions at the supports for the...Ch. 5 - A beam is subjected to a linearly distributed...Ch. 5 - Prob. 5.145RPCh. 5 - Prob. 5.146RPCh. 5 - An 8-in.-diameter cylindrical duct and a 4 8-in....Ch. 5 - Three brass plates are brazed to a steel pipe to...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
BEARINGS BASICS and Bearing Life for Mechanical Design in 10 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=aU4CVZo3wgk;License: Standard Youtube License