
Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
8th Edition
ISBN: 9781119080701
Author: Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 5.1, Problem 31P
To determine
Determine the average velocity in the pipe.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
oyfr
3. The figure shows a frame under the
influence of an external loading made up
of five forces and two moments. Use the
scalar method to calculate moments.
a. Write the resultant force of the
external loading in Cartesian vector
form.
b. Determine the
& direction
of the resultant moment of the
external loading about A.
15 cm
18 cm
2.2 N-m
B
50 N
45°
10 cm
48 N.m
250 N
60 N
20
21
50 N
25 cm
100 N
A
118,
27cm 5, 4:1
The 2-mass system shown below depicts a disk which rotates about its center and has rotational
moment of inertia Jo and radius r. The angular displacement of the disk is given by 0. The spring
with constant k₂ is attached to the disk at a distance from the center. The mass m has linear
displacement & and is subject to an external force u. When the system is at equilibrium, the spring
forces due to k₁ and k₂ are zero. Neglect gravity and aerodynamic drag in this problem. You may
assume the small angle approximation which implies (i) that the springs and dampers remain in
their horizontal / vertical configurations and (ii) that the linear displacement d of a point on the
edge of the disk can be approximated by d≈re.
Ө
K2
www
m
4
Cz
777777
Jo
Make the following assumptions when analyzing the forces and torques:
тв
2
0>0, 0>0, x> > 0, >0
Derive the differential equations of motion for this dynamic system. Start by sketching
LARGE and carefully drawn free-body-diagrams for the disk and the…
A linear system is one that satisfies the principle of superposition. In other words, if an input u₁
yields the output y₁, and an input u2 yields the output y2, the system is said to be linear if a com-
bination of the inputs u = u₁ + u2 yield the sum of the outputs y = y1 + y2.
Using this fact, determine the output y(t) of the following linear system:
given the input:
P(s) =
=
Y(s)
U(s)
=
s+1
s+10
u(t) = e−2+ sin(t)
=e
Chapter 5 Solutions
Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
Ch. 5.1 - Prob. 1PCh. 5.1 - An incompressible fluid flows horizontally in the...Ch. 5.1 - Water flows steadily through the horizontal piping...Ch. 5.1 - Water flows out through a set of thin, closely...Ch. 5.1 - Estimate the rate (in gal/hr) that your car uses...Ch. 5.1 - The pump shown in Fig. P5.6 produces a steady flow...Ch. 5.1 - The fluid axial velocities shown in Fig. P5.7 are...Ch. 5.1 - The human circulatory system consists of a complex...Ch. 5.1 - Air flows steadily between two cross sections in a...Ch. 5.1 - A hydraulic jump (see Video V10.11) is in place...
Ch. 5.1 - A woman is emptying her aquarium at a steady rate...Ch. 5.1 - An evaporative cooling tower (see Fig. P5.12) is...Ch. 5.1 - At cruise conditions, air flows into a jet engine...Ch. 5.1 - Water at 0.1 m3/s and alcohol (SG = 0.8) at 0.3...Ch. 5.1 - In the vortex tube shown in Fig. P5.15, air enters...Ch. 5.1 - Molten plastic at a temperature of 510 °F is...Ch. 5.1 - A water jet pump (see Fig. P5.17) involves a jet...Ch. 5.1 - To measure the mass flowrate of air through a...Ch. 5.1 - Two rivers merge to form a larger river as shown...Ch. 5.1 - Various types of attachments can be used with the...Ch. 5.1 - An appropriate turbulent pipe flow velocity...Ch. 5.1 - As shown in Fig. P5.22, at the entrance to a...Ch. 5.1 - Prob. 23PCh. 5.1 - Oil for lubricating the thrust bearing shown in...Ch. 5.1 - Flow of a viscous fluid over a flat plate surface...Ch. 5.1 - Air at standard conditions enters the compressor...Ch. 5.1 - Estimate the time required to fill with water a...Ch. 5.1 - For an automobile moving along a highway, describe...Ch. 5.1 - A water jet leaves a fixed nozzle with a velocity...Ch. 5.1 - A hypodermic syringe (see Fig. P5.30) is used to...Ch. 5.1 - Figure P5.31 shows a two-reservoir water supply...Ch. 5.1 - The Hoover Dam (see Video V2.4) backs up...Ch. 5.1 - Storm sewer backup causes your basement to flood...Ch. 5.1 - (See The Wide World of Fluids article “‘Green’...Ch. 5.2 - Prob. 35PCh. 5.2 - When a baseball player catches a ball, the force...Ch. 5.2 - Find the horizontal and vertical forces to hold...Ch. 5.2 - Water flows through a horizontal bend and...Ch. 5.2 - Find the magnitude of the force F required to hold...Ch. 5.2 - Water enters the horizontal, circular...Ch. 5.2 - A truck carrying chickens is too heavy for a...Ch. 5.2 - Exhaust (assumed to have the properties of...Ch. 5.2 - Air at T1 = 300 K, p1 = 303 kPa, and V1 = 0.5 m/s...Ch. 5.2 - Water flows steadily from a tank mounted on a cart...Ch. 5.2 - Determine the magnitude and direction of the...Ch. 5.2 - Figure P5.46 shows a lateral pipe fitting. This...Ch. 5.2 - Water flows steadily between fixed vanes, as shown...Ch. 5.2 - The hydraulic dredge shown in Fig. P5.48 is used...Ch. 5.2 - A static thrust stand is to be designed for...Ch. 5.2 - A vertical jet of water leaves a nozzle at a speed...Ch. 5.2 - A horizontal, circular cross-sectional jet of air...Ch. 5.2 - Calculate the pressure change (p2 − p1) for the...Ch. 5.2 - Air flows into the atmosphere from a nozzle and...Ch. 5.2 - Water flows from a large tank into a dish as shown...Ch. 5.2 - Figure P5.55 shows the configuration of the center...Ch. 5.2 - The plate shown in Fig. P5.56 is 0.5 m wide...Ch. 5.2 - Two water jets of equal size and speed strike each...Ch. 5.2 - Figure P5.58 shows coal being dropped from a...Ch. 5.2 - Determine the magnitude of the horizontal...Ch. 5.2 - Water flows steadily into and out of a tank that...Ch. 5.2 - The rocket shown in Fig. P5.61 is held stationary...Ch. 5.2 -
Air discharges from a 2-in.-diameter nozzle and...Ch. 5.2 - Water is sprayed radially outward over 180° as...Ch. 5.2 - A sheet of water of uniform thickness (h = 0.01 m)...Ch. 5.2 - The results of a wind tunnel test to determine the...Ch. 5.2 - A variable mesh screen produces a linear and...Ch. 5.2 - Prob. 67PCh. 5.2 - Prob. 68PCh. 5.2 - Prob. 69PCh. 5.2 - A Pelton wheel vane directs a horizontal, circular...Ch. 5.2 - Prob. 71PCh. 5.2 - Thrust vector control is a technique that can be...Ch. 5.2 - Prob. 73PCh. 5.2 - Prob. 74PCh. 5.2 - Prob. 75PCh. 5.2 - Prob. 76PCh. 5.2 - (See The Wide World of Fluids article titled “Bow...Ch. 5.2 - Water flows from a two-dimensional open channel...Ch. 5.2 - Prob. 79PCh. 5.2 - A snowplow mounted on a truck clears a path 12 ft...Ch. 5.2 - Prob. 81PCh. 5.2 - Water at 60 °F is flowing through the 2-in. steel...Ch. 5.2 - Five liters/s of water enter the rotor shown in...Ch. 5.2 - Figure P5.84 shows a simplified sketch of a...Ch. 5.2 - The hydraulic turbine shown in Fig. P5.85 has a 10...Ch. 5.2 - Prob. 86PCh. 5.2 -
Calculate the torque required to drive the pump...Ch. 5.2 - Prob. 88PCh. 5.2 - Prob. 89PCh. 5.2 - Prob. 90PCh. 5.3 - Distinguish between shaft work and other kinds of...Ch. 5.3 - Prob. 92PCh. 5.3 - A horizontal Venturi flow meter consists of a...Ch. 5.3 - Figure P5.94 shows the mixing of two streams. The...Ch. 5.3 - Liquid water at 40 °F flows down a vertical,...Ch. 5.3 - A simplified schematic drawing of the carburetor...Ch. 5.3 - Oil (SG = 0.9) flows downward through a vertical...Ch. 5.3 - An incompressible liquid flows steadily along the...Ch. 5.3 - Prob. 99PCh. 5.3 - A water siphon having a constant inside diameter...Ch. 5.3 - Figure P5.101 shows a test rig for evaluating the...Ch. 5.3 - For the 180° elbow and nozzle flow shown in Fig....Ch. 5.3 - An automobile engine will work best when the back...Ch. 5.3 - (See The Wide World of Fluids article titled...Ch. 5.3 - Based on flowrate and pressure rise information,...Ch. 5.3 - Oil (SG = 0.88) flows in an inclined pipe at a...Ch. 5.3 - The pumper truck shown in Fig. P5.107 is to...Ch. 5.3 - The hydroelectric turbine shown in Fig. P5.108...Ch. 5.3 - A pump is to move water from a lake into a large,...Ch. 5.3 - Water is pumped from the tank shown in Fig....Ch. 5.3 - Water is pumped steadily through the apparatus...Ch. 5.3 - Water is pumped from the large tank shown in Fig....Ch. 5.3 - Water flows by gravity from one lake to another as...Ch. 5.3 - The turbine shown in Fig. P5.114 develops 100 hp...Ch. 5.3 - Prob. 115PCh. 5.3 - Water is to be moved from one large reservoir to...Ch. 5.3 - Determine the volume flow rate and minimum power...Ch. 5.3 - Prob. 118PCh. 5.3 - Water is to be pumped from the large tank shown in...Ch. 5.3 - Prob. 120PCh. 5.3 - When the pump shown in Fig. P5.121 is stopped,...Ch. 5.3 - Air flows past an object in a pipe of 2-m diameter...Ch. 5.3 - Water flows steadily down the inclined pipe as...Ch. 5.3 - When fluid flows through an abrupt expansion as...Ch. 5.3 - Water (60 °F) flows through an annular space...Ch. 5.3 - Find the acceleration of the cart shown in Fig....Ch. 5.3 - Prob. 128PCh. 5.3 - Water flows vertically upward in a circular cross-...Ch. 5.3 - Prob. 130PCh. 5.3 - The cross-sectional area of a rectangular duct is...Ch. 5.3 - A small fan moves air at a mass flowrate of 0.004...Ch. 5.3 - Air enters a radial blower with zero angular...Ch. 5.3 - Water enters a pump impeller radially. It leaves...Ch. 5.3 - Water enters an axial-flow turbine rotor with an...Ch. 5.3 - An inward flow radial turbine (see Fig. P5.136)...Ch. 5.5 - Prob. 1LLPCh. 5.5 - Prob. 2LLPCh. 5.5 - Prob. 3LLPCh. 5.5 - Prob. 4LLP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The manometer fluid in the figure given below is mercury where D = 3 in and h = 1 in. Estimate the volume flow in the tube (ft3/s) if the flowing fluid is gasoline at 20°C and 1 atm. The density of mercury and gasoline are 26.34 slug/ft3 and 1.32 slug/ft3 respectively. The gravitational force is 32.2 ft/s2.arrow_forwardUsing the Bernoulli equation to find the general solution. If an initial condition is given, find the particular solution. y' + xy = xy¯¹, y(0) = 3arrow_forwardTest for exactness. If exact, solve. If not, use an integrating factor as given or obtained by inspection or by the theorems in the text. a. 2xydx+x²dy = 0 b. (x2+y2)dx-2xydy = 0 c. 6xydx+5(y + x2)dy = 0arrow_forward
- Newton's law of cooling. A thermometer, reading 5°C, is brought into a room whose temperature is 22°C. One minute later the thermometer reading is 12°C. How long does it take until the reading is practically 22°C, say, 21.9°C?arrow_forwardSolve a. y' + 2xy = ex-x² b. y' + y sin x = ecosx, y(0) = −1 y(0) = −2.5arrow_forward= MMB 241 Tutorial 3.pdf 2/6 90% + + 5. The boat is traveling along the circular path with a speed of v = (0.0625t²) m/s, where t is in seconds. Determine the magnitude of its acceleration when t = 10 s. 40 m v = 0.0625² 6. If the motorcycle has a deceleration of at = (0.001s) m/s² and its speed at position A is 25 m/s, determine the magnitude of its acceleration when it passes point B. .A 90° 300 m n B 2arrow_forward
- = MMB 241 Tutorial 3.pdf 4/6 67% + 9. The car is traveling along the road with a speed of v = (2 s) m/s, where s is in meters. Determine the magnitude of its acceleration when s = 10 m. v = (2s) m/s 50 m 10. The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t 3/2) rad, where t is in seconds. A ball rolls outward along the radial groove so that its position is r = (0.1+³) m, where t is in seconds. Determine the magnitudes of the velocity and acceleration of the ball when t = 1.5s.arrow_forwardThe population of a certain country is known to increase at a rate proportional to the number of people presently living in the country. If after two years the population has doubled, and after three years the population is 20,000, estimate the number of people initially living in the country.arrow_forward= MMB 241 Tutorial 3.pdf 6/6 100% + | 日 13. The slotted link is pinned at O, and as a result of the constant angular velocity *= 3 rad/s it drives the peg P for a short distance along the spiral guide r = (0.40) m, where 0 is in radians. Determine the radial and transverse components of the velocity and acceleration of P at the instant = 1/3 rad. 0.5 m P r = 0.40 =3 rad/sarrow_forward
- = MMB 241 Tutorial 3.pdf 1/6 90% + DYNAMICS OF PARTICLES (MMB 241) Tutorial 3 Topic: Kinematics of Particles:- Path and Polar coordinate systems and general curvilinear QUESTIONS motion. 1. Determine the acceleration at s = 2 m if v = (2 s) m/s², where s is in meters. At s = 0, v = 1 m/s. 3 m 2. Determine the acceleration when t=1s if v = (4t2+2) m/s, where t is in seconds. v=(4²+2) m/s 6 marrow_forward5.112 A mounting bracket for electronic components is formed from sheet metal with a uniform thickness. Locate the center of gravity of the bracket. 0.75 in. 3 in. ༧ Fig. P5.112 1.25 in. 0.75 in. y r = 0.625 in. 2.5 in. 1 in. 6 in. xarrow_forward4-105. Replace the force system acting on the beam by an equivalent resultant force and couple moment at point B. A 30 in. 4 in. 12 in. 16 in. B 30% 3 in. 10 in. 250 lb 260 lb 13 5 12 300 lbarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License