Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
8th Edition
ISBN: 9781119080701
Author: Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 5.3, Problem 109P
To determine
Whether the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. Consider a polymeric membrane within a 6 cm diameter stirred ultrafiltration cell. The membrane is
30 μm thick. The membrane has pores equivalent in size to a spherical molecule with a molecular weight
of 100,000, a porosity of 80%, and a tortuosity of 2.5. On the feed side of the membrane, we have a
solution containing a protein at a concentration of 8 g L-1 with these properties: a = 3 nm and DAB = 6.0 ×
10-7 cm² s¹. The solution viscosity is 1 cP. The hydrodynamic pressure on the protein side of the
membrane is 20 pounds per square inch (psi) higher than on the filtrate side of the membrane. Assume
that the hydrodynamic pressure difference is much larger than the osmotic pressure difference
(advection >> diffusion). Determine the convective flow rate of the solution across the membrane.
1. Calculate the filtration flow rate (cm³ s¹) of a pure fluid across a 100 cm² membrane. Assume the
viscosity (µ) of the fluid is 1.8 cP. The porosity of the membrane is 40% and the thickness of the
membrane is 500 μm. The pores run straight through the membrane and these pores have a radius of
0.225 μm. The pressure drop applied across the membrane is 75 psi. (Note: 1 cP = 0.001 N s m²² = 0.001
Pa s.)
3. Tong and Anderson (1996) obtained for BSA the following data in a polyacrylamide gel for the
partition coefficient (K) as a function of the gel volume fraction (4). The BSA they used had a molecular
weight of 67,000, a molecular radius of 3.6 nm, and a diffusivity of 6 × 10-7 cm2 s-1. Compare the
Ogston equation
K=exp
+
to their data and obtain an estimate for the radius of the cylindrical fibers (af) that comprise the gel.
Hint: You will need to plot Ink as a function of gel volume fraction as part of your analysis. Please include
your MATLAB, or other, code with your solution.
Gel Volume Fraction (4)
KBSA
0.00
1.0
0.025
0.35
0.05
0.09
0.06
0.05
0.075
0.017
0.085
0.02
0.105
0.03
Chapter 5 Solutions
Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
Ch. 5.1 - Prob. 1PCh. 5.1 - An incompressible fluid flows horizontally in the...Ch. 5.1 - Water flows steadily through the horizontal piping...Ch. 5.1 - Water flows out through a set of thin, closely...Ch. 5.1 - Estimate the rate (in gal/hr) that your car uses...Ch. 5.1 - The pump shown in Fig. P5.6 produces a steady flow...Ch. 5.1 - The fluid axial velocities shown in Fig. P5.7 are...Ch. 5.1 - The human circulatory system consists of a complex...Ch. 5.1 - Air flows steadily between two cross sections in a...Ch. 5.1 - A hydraulic jump (see Video V10.11) is in place...
Ch. 5.1 - A woman is emptying her aquarium at a steady rate...Ch. 5.1 - An evaporative cooling tower (see Fig. P5.12) is...Ch. 5.1 - At cruise conditions, air flows into a jet engine...Ch. 5.1 - Water at 0.1 m3/s and alcohol (SG = 0.8) at 0.3...Ch. 5.1 - In the vortex tube shown in Fig. P5.15, air enters...Ch. 5.1 - Molten plastic at a temperature of 510 °F is...Ch. 5.1 - A water jet pump (see Fig. P5.17) involves a jet...Ch. 5.1 - To measure the mass flowrate of air through a...Ch. 5.1 - Two rivers merge to form a larger river as shown...Ch. 5.1 - Various types of attachments can be used with the...Ch. 5.1 - An appropriate turbulent pipe flow velocity...Ch. 5.1 - As shown in Fig. P5.22, at the entrance to a...Ch. 5.1 - Prob. 23PCh. 5.1 - Oil for lubricating the thrust bearing shown in...Ch. 5.1 - Flow of a viscous fluid over a flat plate surface...Ch. 5.1 - Air at standard conditions enters the compressor...Ch. 5.1 - Estimate the time required to fill with water a...Ch. 5.1 - For an automobile moving along a highway, describe...Ch. 5.1 - A water jet leaves a fixed nozzle with a velocity...Ch. 5.1 - A hypodermic syringe (see Fig. P5.30) is used to...Ch. 5.1 - Figure P5.31 shows a two-reservoir water supply...Ch. 5.1 - The Hoover Dam (see Video V2.4) backs up...Ch. 5.1 - Storm sewer backup causes your basement to flood...Ch. 5.1 - (See The Wide World of Fluids article “‘Green’...Ch. 5.2 - Prob. 35PCh. 5.2 - When a baseball player catches a ball, the force...Ch. 5.2 - Find the horizontal and vertical forces to hold...Ch. 5.2 - Water flows through a horizontal bend and...Ch. 5.2 - Find the magnitude of the force F required to hold...Ch. 5.2 - Water enters the horizontal, circular...Ch. 5.2 - A truck carrying chickens is too heavy for a...Ch. 5.2 - Exhaust (assumed to have the properties of...Ch. 5.2 - Air at T1 = 300 K, p1 = 303 kPa, and V1 = 0.5 m/s...Ch. 5.2 - Water flows steadily from a tank mounted on a cart...Ch. 5.2 - Determine the magnitude and direction of the...Ch. 5.2 - Figure P5.46 shows a lateral pipe fitting. This...Ch. 5.2 - Water flows steadily between fixed vanes, as shown...Ch. 5.2 - The hydraulic dredge shown in Fig. P5.48 is used...Ch. 5.2 - A static thrust stand is to be designed for...Ch. 5.2 - A vertical jet of water leaves a nozzle at a speed...Ch. 5.2 - A horizontal, circular cross-sectional jet of air...Ch. 5.2 - Calculate the pressure change (p2 − p1) for the...Ch. 5.2 - Air flows into the atmosphere from a nozzle and...Ch. 5.2 - Water flows from a large tank into a dish as shown...Ch. 5.2 - Figure P5.55 shows the configuration of the center...Ch. 5.2 - The plate shown in Fig. P5.56 is 0.5 m wide...Ch. 5.2 - Two water jets of equal size and speed strike each...Ch. 5.2 - Figure P5.58 shows coal being dropped from a...Ch. 5.2 - Determine the magnitude of the horizontal...Ch. 5.2 - Water flows steadily into and out of a tank that...Ch. 5.2 - The rocket shown in Fig. P5.61 is held stationary...Ch. 5.2 -
Air discharges from a 2-in.-diameter nozzle and...Ch. 5.2 - Water is sprayed radially outward over 180° as...Ch. 5.2 - A sheet of water of uniform thickness (h = 0.01 m)...Ch. 5.2 - The results of a wind tunnel test to determine the...Ch. 5.2 - A variable mesh screen produces a linear and...Ch. 5.2 - Prob. 67PCh. 5.2 - Prob. 68PCh. 5.2 - Prob. 69PCh. 5.2 - A Pelton wheel vane directs a horizontal, circular...Ch. 5.2 - Prob. 71PCh. 5.2 - Thrust vector control is a technique that can be...Ch. 5.2 - Prob. 73PCh. 5.2 - Prob. 74PCh. 5.2 - Prob. 75PCh. 5.2 - Prob. 76PCh. 5.2 - (See The Wide World of Fluids article titled “Bow...Ch. 5.2 - Water flows from a two-dimensional open channel...Ch. 5.2 - Prob. 79PCh. 5.2 - A snowplow mounted on a truck clears a path 12 ft...Ch. 5.2 - Prob. 81PCh. 5.2 - Water at 60 °F is flowing through the 2-in. steel...Ch. 5.2 - Five liters/s of water enter the rotor shown in...Ch. 5.2 - Figure P5.84 shows a simplified sketch of a...Ch. 5.2 - The hydraulic turbine shown in Fig. P5.85 has a 10...Ch. 5.2 - Prob. 86PCh. 5.2 -
Calculate the torque required to drive the pump...Ch. 5.2 - Prob. 88PCh. 5.2 - Prob. 89PCh. 5.2 - Prob. 90PCh. 5.3 - Distinguish between shaft work and other kinds of...Ch. 5.3 - Prob. 92PCh. 5.3 - A horizontal Venturi flow meter consists of a...Ch. 5.3 - Figure P5.94 shows the mixing of two streams. The...Ch. 5.3 - Liquid water at 40 °F flows down a vertical,...Ch. 5.3 - A simplified schematic drawing of the carburetor...Ch. 5.3 - Oil (SG = 0.9) flows downward through a vertical...Ch. 5.3 - An incompressible liquid flows steadily along the...Ch. 5.3 - Prob. 99PCh. 5.3 - A water siphon having a constant inside diameter...Ch. 5.3 - Figure P5.101 shows a test rig for evaluating the...Ch. 5.3 - For the 180° elbow and nozzle flow shown in Fig....Ch. 5.3 - An automobile engine will work best when the back...Ch. 5.3 - (See The Wide World of Fluids article titled...Ch. 5.3 - Based on flowrate and pressure rise information,...Ch. 5.3 - Oil (SG = 0.88) flows in an inclined pipe at a...Ch. 5.3 - The pumper truck shown in Fig. P5.107 is to...Ch. 5.3 - The hydroelectric turbine shown in Fig. P5.108...Ch. 5.3 - A pump is to move water from a lake into a large,...Ch. 5.3 - Water is pumped from the tank shown in Fig....Ch. 5.3 - Water is pumped steadily through the apparatus...Ch. 5.3 - Water is pumped from the large tank shown in Fig....Ch. 5.3 - Water flows by gravity from one lake to another as...Ch. 5.3 - The turbine shown in Fig. P5.114 develops 100 hp...Ch. 5.3 - Prob. 115PCh. 5.3 - Water is to be moved from one large reservoir to...Ch. 5.3 - Determine the volume flow rate and minimum power...Ch. 5.3 - Prob. 118PCh. 5.3 - Water is to be pumped from the large tank shown in...Ch. 5.3 - Prob. 120PCh. 5.3 - When the pump shown in Fig. P5.121 is stopped,...Ch. 5.3 - Air flows past an object in a pipe of 2-m diameter...Ch. 5.3 - Water flows steadily down the inclined pipe as...Ch. 5.3 - When fluid flows through an abrupt expansion as...Ch. 5.3 - Water (60 °F) flows through an annular space...Ch. 5.3 - Find the acceleration of the cart shown in Fig....Ch. 5.3 - Prob. 128PCh. 5.3 - Water flows vertically upward in a circular cross-...Ch. 5.3 - Prob. 130PCh. 5.3 - The cross-sectional area of a rectangular duct is...Ch. 5.3 - A small fan moves air at a mass flowrate of 0.004...Ch. 5.3 - Air enters a radial blower with zero angular...Ch. 5.3 - Water enters a pump impeller radially. It leaves...Ch. 5.3 - Water enters an axial-flow turbine rotor with an...Ch. 5.3 - An inward flow radial turbine (see Fig. P5.136)...Ch. 5.5 - Prob. 1LLPCh. 5.5 - Prob. 2LLPCh. 5.5 - Prob. 3LLPCh. 5.5 - Prob. 4LLP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Assignment 10, Question 1, Problem Book #189 Problem Statement An ideal Brayton cycle operates with no reheat, intercooling, or regeneration. The com- pressor inlet conditions are 30°C and 1 bar. The compression ratio is 11. The turbine inlet temperature is 1,300 K. Determine the turbine exit temperature, the thermal efficiency, and the back work ratio. Use an air standard analysis. Answer Table Correct Stage Description Your Answer Answer * 1 Compressor inlet enthalpy (kJ/kg) Due Date Grade (%) Weight Attempt Action/Message Part Type 1 2 1 Compressor inlet relative pressure 1 Compressor exit relative pressure 1 Compressor exit enthalpy (kJ/kg) Compressor work (kJ/kg) Turbine inlet enthalpy (kJ/kg) Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm 0.0 0.0 1 1/5 Submit Stage 1 0.0 1 1 Dec 5, 2024 11:59 pm 0.0 1 Dec 5, 2024 11:59 pm 0.0 1 2 Turbine inlet relative pressure Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm 0.0 1 1/5 0.0 1 2 Combustion chamber heat addition (kJ/kg) Dec…arrow_forwardAssignment 10, Question 4, Problem Book #202 Problem Statement An ideal Brayton cycle with a two-stage compressor, a two-stage turbine, and a regenerator operates with a mass flow rate of 25 kg/s. The regenerator cold inlet is at 490 K and its effectiveness is 60%. Ambient conditions are 90 kPa and 20°C. The intercooler operates at 450 kPa and the reheater operates at 550 kPa. The temperature at the exit of the combustion chamber is 1,400 K. Heat is removed in the intercooler at a rate of 2.5 MW and heat is added in the reheater at a rate of 10 MW. Determine the thermal efficiency and the back work ratio. Use a cold air standard analysis with cp = 1.005 kJ/(kg K) and k = 1.4. . Answer Table Stage Description Your Answer Correct Answer Due Date Grade (%) 1 Thermal efficiency (%) Dec 5, 2024 11:59 pm 0.0 1 Weight Attempt Action/Message 1/5 Part Type Submit 1 Back work ratio (%) Dec 5, 2024 11:59 pm 0.0 1 * Correct answers will only show after due date has passed.arrow_forwardAssignment 10, Question 3, Problem Book #198 Problem Statement Consider a Brayton cycle with a regenerator. The regenerator has an effectiveness of 75%. The compressor inlet conditions are 1.2 bar and 300 K and the mass flowrate is 4.5 kg/s. The compressor outlet pressure is 9 bar. Both the compressor and turbine consist of a single isentropic stage. What minimum power output must be achieved before the regenerator begins to have a benefit? Use an air-standard analysis. Answer Table Correct Answer Stage Description Your Answer Due Date Grade (%) Part Weight Attempt Action/Message Туре 1 Power output (MW) Dec 5, 2024 11:59 pm 0.0 1 1/5 Submit * Correct answers will only show after due date has passed.arrow_forward
- Q-3 Consider an engine operating on the ideal Diesel cycle with air as the working fluid. The volume of the cylinder is 1200 cm³ at the beginning of the Compression process, 75 cm³ at the end, and 150 cm³ after the heat addition process. Air is at 17°c and lookpa at the beginning of the compression proc ess. Determine @ The pressure at the beginning of the heat rejection process. the net work per cycle in kjⒸthe mean effective pressur. Answers @264.3 KN/m² ②0.784 kj or 544-6 kj © 697 KN 19 2 marrow_forwardIn the system shown in the (img 1), water flows through the pump at a rate of 50L/s. The permissible NPSH providedby the manufacturer with that flow is 3.6 m. Determine the maximum height Delta z above the water surface at which the Pump can be installed to operate without cavitation. Include all losses in the suction tube. What is the value of the smaller total losses? What is the value of minor-minor losses? What is the value of major-minor losses?arrow_forwardA plastic canister whose bottom surface can be approximated as a flat surface1.9 m and 3 m long, travels through the water at 19 °C with a speed of up to 48 km/h. Determine: Drag due to friction that water exerts on the boat The power needed to overcome itarrow_forward
- (Fig. 1) shows the performance of a centrifugal pump for various diameters of theimpeller. For such a pump with a 5" diameter impeller, what power, in hp, would be expected to supply 5 L/s?what is its efficiency, in %?A pumping system requires 6 L/s of water with a load of 8 m, which of the pumpsof (fig. 1) would you recommend for this application?;arrow_forwardYou have the following information about a ship (image 1) Determine:a) Calculation of the block coefficient. b) Calculation of the wake coefficient. c) Determine the length of the wake.arrow_forwardA stainless steel canoe moves horizontally along the surface of a lake at 3.7 mi/h. TheThe lake's water temperature is 60°F. The bottom of the canoe is 25 ft long and flat. The boundary layer inThe bottom of the canoe is laminar or turbulent. the value of kinematic viscosity is? the value of the Reynolds number is?arrow_forward
- Example Example 1 A vertical tubular test section is to be installed in an experimental high pressure water loop. The tube is 10.16 mm i.d. and 3.66 m long heated uniformly over its EXAMPLE 73 length. An estimate of the pressure drop across the test section is required as a function of the flow-rate of water entering the test section at 204°C and 68.9 bar. (1) Calculate the pressure drop over the test section for a water flow of 0.108 kg/s with a power of 100 kW applied to the tube using (i) the homogeneous model (ii) the Martinelli-Nelson model (iii) The Thom correlation (iv) the Baroczy correlation (2) Estimate the pressure drop versus flow-rate relationship over the range 0.108 to 0.811 kg/s (2-15 USGPM) for a power of 100 kW and 200 kW applied to the tube using (i) the Martinelli-Nelson model (ii) the Baroczy correlationarrow_forward"A seismograph detects vibrations caused by seismic movements. To model this system, it is assumed that the structure undergoes a vibration with a known amplitude band frequency w (rad/s), such that its vertical displacement is given by xB=bsin(wt). This movement of the structure will produce a relative acceleration in the mass m of 2 kg, whose displacement 2 will be plotted on a roller." x= 15 kN/m Structure -WI 24 mm (Ctrl) sin(wt) b(w/w)² √√1 (w/w)] + [25(w/w)]²' "The seismograph's roller measures 60 mm, and a maximum vibration amplitude of the structure of b<5 mm is expected. Design the damper (constant c) to ensure that, for a constant oscillation, the seismograph functions correctly and the needle does not move off the roller."arrow_forwardAircraft B is traveling at a steady speed of VB = 400 mi/hr at an altitude of 6000 ft. Meanwhile, when aircraft A is at an altitude of 10,000 ft, the line connecting A to B lies in the vertical plane of B's flight path and forms an angle of 0 = 30 degrees with the vertical. Assuming A maintains a constant velocity, find the speed required for a collision to occur. Additionally, calculate the time it would take for the collision to happen after both aircraft reach the described positions, provided no evasive measures are taken. Problem outline: 1- Find the velocity of A for the collision to happen. 2- Find the time at which the collision happens. 3- Explain the solution process with your own words. - 10,000 ft 12° 6000 ft B UBarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY