
Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
8th Edition
ISBN: 9781119080701
Author: Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5.3, Problem 99P
To determine
The maximum flow rate for the friction less flow.
Whether the actual flow rate is more or less than the friction less value.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A prototype automobile is designed to travel at 65 km/hr. A model of this design is tested in a wind tunnel with identical standard sea-
level air properties at a 1:5 scale. The measured model drag is 529 N, enforcing dynamic similarity. Determine (a) the drag force on the
prototype and (b) the power required to overcome this drag. See the equation
Vm
m
=
D
V Dm
(a) Dp = i
(b) Pp = i
N
hp
A new blimp will move at 6 m/s in 20°C air, and we want to predict the drag force. Using a 1: 14-scale model in water at 20°C and
measuring a 2500-N drag force on the model, determine (a) the required water velocity, (b) the drag on the prototype blimp and, (c) the
power that will be required to propel it through the air.
(a) Vm = i
(b) Dp = i
(c) Pp = i
m/s
N
W
Drag measurements were taken for a sphere, with a diameter of 5 cm, moving at 3.7 m/s in water at 20°C. The resulting drag on the
sphere was 10 N. For a balloon with 1-m diameter rising in air with standard temperature and pressure, determine (a) the velocity if
Reynolds number similarity is enforced and (b) the drag force if the drag coefficient in the equation below is the dependent pi term.
li ε pVI
D
1
= CD = Q
μ
(a) Vp = i
(b) Dp = i
m/s
N
Chapter 5 Solutions
Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
Ch. 5.1 - Prob. 1PCh. 5.1 - An incompressible fluid flows horizontally in the...Ch. 5.1 - Water flows steadily through the horizontal piping...Ch. 5.1 - Water flows out through a set of thin, closely...Ch. 5.1 - Estimate the rate (in gal/hr) that your car uses...Ch. 5.1 - The pump shown in Fig. P5.6 produces a steady flow...Ch. 5.1 - The fluid axial velocities shown in Fig. P5.7 are...Ch. 5.1 - The human circulatory system consists of a complex...Ch. 5.1 - Air flows steadily between two cross sections in a...Ch. 5.1 - A hydraulic jump (see Video V10.11) is in place...
Ch. 5.1 - A woman is emptying her aquarium at a steady rate...Ch. 5.1 - An evaporative cooling tower (see Fig. P5.12) is...Ch. 5.1 - At cruise conditions, air flows into a jet engine...Ch. 5.1 - Water at 0.1 m3/s and alcohol (SG = 0.8) at 0.3...Ch. 5.1 - In the vortex tube shown in Fig. P5.15, air enters...Ch. 5.1 - Molten plastic at a temperature of 510 °F is...Ch. 5.1 - A water jet pump (see Fig. P5.17) involves a jet...Ch. 5.1 - To measure the mass flowrate of air through a...Ch. 5.1 - Two rivers merge to form a larger river as shown...Ch. 5.1 - Various types of attachments can be used with the...Ch. 5.1 - An appropriate turbulent pipe flow velocity...Ch. 5.1 - As shown in Fig. P5.22, at the entrance to a...Ch. 5.1 - Prob. 23PCh. 5.1 - Oil for lubricating the thrust bearing shown in...Ch. 5.1 - Flow of a viscous fluid over a flat plate surface...Ch. 5.1 - Air at standard conditions enters the compressor...Ch. 5.1 - Estimate the time required to fill with water a...Ch. 5.1 - For an automobile moving along a highway, describe...Ch. 5.1 - A water jet leaves a fixed nozzle with a velocity...Ch. 5.1 - A hypodermic syringe (see Fig. P5.30) is used to...Ch. 5.1 - Figure P5.31 shows a two-reservoir water supply...Ch. 5.1 - The Hoover Dam (see Video V2.4) backs up...Ch. 5.1 - Storm sewer backup causes your basement to flood...Ch. 5.1 - (See The Wide World of Fluids article “‘Green’...Ch. 5.2 - Prob. 35PCh. 5.2 - When a baseball player catches a ball, the force...Ch. 5.2 - Find the horizontal and vertical forces to hold...Ch. 5.2 - Water flows through a horizontal bend and...Ch. 5.2 - Find the magnitude of the force F required to hold...Ch. 5.2 - Water enters the horizontal, circular...Ch. 5.2 - A truck carrying chickens is too heavy for a...Ch. 5.2 - Exhaust (assumed to have the properties of...Ch. 5.2 - Air at T1 = 300 K, p1 = 303 kPa, and V1 = 0.5 m/s...Ch. 5.2 - Water flows steadily from a tank mounted on a cart...Ch. 5.2 - Determine the magnitude and direction of the...Ch. 5.2 - Figure P5.46 shows a lateral pipe fitting. This...Ch. 5.2 - Water flows steadily between fixed vanes, as shown...Ch. 5.2 - The hydraulic dredge shown in Fig. P5.48 is used...Ch. 5.2 - A static thrust stand is to be designed for...Ch. 5.2 - A vertical jet of water leaves a nozzle at a speed...Ch. 5.2 - A horizontal, circular cross-sectional jet of air...Ch. 5.2 - Calculate the pressure change (p2 − p1) for the...Ch. 5.2 - Air flows into the atmosphere from a nozzle and...Ch. 5.2 - Water flows from a large tank into a dish as shown...Ch. 5.2 - Figure P5.55 shows the configuration of the center...Ch. 5.2 - The plate shown in Fig. P5.56 is 0.5 m wide...Ch. 5.2 - Two water jets of equal size and speed strike each...Ch. 5.2 - Figure P5.58 shows coal being dropped from a...Ch. 5.2 - Determine the magnitude of the horizontal...Ch. 5.2 - Water flows steadily into and out of a tank that...Ch. 5.2 - The rocket shown in Fig. P5.61 is held stationary...Ch. 5.2 -
Air discharges from a 2-in.-diameter nozzle and...Ch. 5.2 - Water is sprayed radially outward over 180° as...Ch. 5.2 - A sheet of water of uniform thickness (h = 0.01 m)...Ch. 5.2 - The results of a wind tunnel test to determine the...Ch. 5.2 - A variable mesh screen produces a linear and...Ch. 5.2 - Prob. 67PCh. 5.2 - Prob. 68PCh. 5.2 - Prob. 69PCh. 5.2 - A Pelton wheel vane directs a horizontal, circular...Ch. 5.2 - Prob. 71PCh. 5.2 - Thrust vector control is a technique that can be...Ch. 5.2 - Prob. 73PCh. 5.2 - Prob. 74PCh. 5.2 - Prob. 75PCh. 5.2 - Prob. 76PCh. 5.2 - (See The Wide World of Fluids article titled “Bow...Ch. 5.2 - Water flows from a two-dimensional open channel...Ch. 5.2 - Prob. 79PCh. 5.2 - A snowplow mounted on a truck clears a path 12 ft...Ch. 5.2 - Prob. 81PCh. 5.2 - Water at 60 °F is flowing through the 2-in. steel...Ch. 5.2 - Five liters/s of water enter the rotor shown in...Ch. 5.2 - Figure P5.84 shows a simplified sketch of a...Ch. 5.2 - The hydraulic turbine shown in Fig. P5.85 has a 10...Ch. 5.2 - Prob. 86PCh. 5.2 -
Calculate the torque required to drive the pump...Ch. 5.2 - Prob. 88PCh. 5.2 - Prob. 89PCh. 5.2 - Prob. 90PCh. 5.3 - Distinguish between shaft work and other kinds of...Ch. 5.3 - Prob. 92PCh. 5.3 - A horizontal Venturi flow meter consists of a...Ch. 5.3 - Figure P5.94 shows the mixing of two streams. The...Ch. 5.3 - Liquid water at 40 °F flows down a vertical,...Ch. 5.3 - A simplified schematic drawing of the carburetor...Ch. 5.3 - Oil (SG = 0.9) flows downward through a vertical...Ch. 5.3 - An incompressible liquid flows steadily along the...Ch. 5.3 - Prob. 99PCh. 5.3 - A water siphon having a constant inside diameter...Ch. 5.3 - Figure P5.101 shows a test rig for evaluating the...Ch. 5.3 - For the 180° elbow and nozzle flow shown in Fig....Ch. 5.3 - An automobile engine will work best when the back...Ch. 5.3 - (See The Wide World of Fluids article titled...Ch. 5.3 - Based on flowrate and pressure rise information,...Ch. 5.3 - Oil (SG = 0.88) flows in an inclined pipe at a...Ch. 5.3 - The pumper truck shown in Fig. P5.107 is to...Ch. 5.3 - The hydroelectric turbine shown in Fig. P5.108...Ch. 5.3 - A pump is to move water from a lake into a large,...Ch. 5.3 - Water is pumped from the tank shown in Fig....Ch. 5.3 - Water is pumped steadily through the apparatus...Ch. 5.3 - Water is pumped from the large tank shown in Fig....Ch. 5.3 - Water flows by gravity from one lake to another as...Ch. 5.3 - The turbine shown in Fig. P5.114 develops 100 hp...Ch. 5.3 - Prob. 115PCh. 5.3 - Water is to be moved from one large reservoir to...Ch. 5.3 - Determine the volume flow rate and minimum power...Ch. 5.3 - Prob. 118PCh. 5.3 - Water is to be pumped from the large tank shown in...Ch. 5.3 - Prob. 120PCh. 5.3 - When the pump shown in Fig. P5.121 is stopped,...Ch. 5.3 - Air flows past an object in a pipe of 2-m diameter...Ch. 5.3 - Water flows steadily down the inclined pipe as...Ch. 5.3 - When fluid flows through an abrupt expansion as...Ch. 5.3 - Water (60 °F) flows through an annular space...Ch. 5.3 - Find the acceleration of the cart shown in Fig....Ch. 5.3 - Prob. 128PCh. 5.3 - Water flows vertically upward in a circular cross-...Ch. 5.3 - Prob. 130PCh. 5.3 - The cross-sectional area of a rectangular duct is...Ch. 5.3 - A small fan moves air at a mass flowrate of 0.004...Ch. 5.3 - Air enters a radial blower with zero angular...Ch. 5.3 - Water enters a pump impeller radially. It leaves...Ch. 5.3 - Water enters an axial-flow turbine rotor with an...Ch. 5.3 - An inward flow radial turbine (see Fig. P5.136)...Ch. 5.5 - Prob. 1LLPCh. 5.5 - Prob. 2LLPCh. 5.5 - Prob. 3LLPCh. 5.5 - Prob. 4LLP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate the forces in all members of the truss shown using either the method of joints or the method of sectionsarrow_forward20-4-2025 Exam-2-Tribology Q1: What are the assumptions of hydrodynamic lubrication theory: Q2: Explain with sketch the cycle or process of engine lubrication system-pressurized lubrication system Q3: A short bearing is designed to operate with an eccentricity ratio = 0. 7. The journal diameter is 60 mm, and its speed is 1300 r.p.m. The journal is supported by a short hydrodynamic bearing of length L/D = 0. 5, and clearance ratio C/R = 103. The radial load on the bearing is 9800 N. a. Find the Sommerfeld number. b. Find the minimum viscosity of the lubricant for operating at ε = 0.7 c. Select a lubricant if the average bearing operating temperature is 70°c Q4: Two parallel circular disks of 100 mm diameter have a clearance of Imm between them. Under load, the downward velocity of the upper disk is 2 m/s. At the same time, the lower disk is stationary. The clearance is full of SAE 40 oil at a temperature of 60°c. a. Find the load on the upper disk that results in the instantaneous…arrow_forwardTribobolgy 15/2022 Monthly Exam. Automobile Eng. Dert 2nd Semster/3rd class Max. Mark: 100% 7. Viscosity of multi-grade oils (a) Reduces with temperature (c) is less sensitive to temperature (b) Increases with temperature (d) None of the above 8. In a hydrodynamic journal bearing if eccentricity ratio = 1, it means (a) Journal/shaft is subjected to no load and the rotational speed is very high. (b) Journal is subjected to no load and the rotational speed is moderate (c) Journal is subjected to very light load and the rotational speed is very high. (d) Journal is subjected to very high load and the rotational speed is negligible. Q4/ The journal speed of a 100mm diameter journal is 2500 rpm. The journal is supported by a short hydrodynamic bearing of length L=0.6D, eccentricity ratio = 0.75 and a clearance ratio C/R=0.001. The radial load on the bearing is 10 kN. The lubricant is SAE 30, and the operating temperature of the lubricant in the bearing is 700C. 1- Assume…arrow_forward
- 1 of 2 Monthly Exam. Automobile Eng. Dert 2nd Semster/3rd class Max. Mark: 100% Q1/A/ Compare between the long and short journal bearings B/ With the help of Stribeck's curve, discuss different regimes of lubrication. C/ Explain the importance of Tribology in the design of different machine elements Q2 /A/ According to the SAE viscosity grading system all engine oils are divided into two classes: monograde and multi-grade. Compare between them? B/What are the differences between grease and Synthetic oils C/ Explain the effect of eccentricity ratio & with respect to hydrodynamic journal bearing. Q3/A/ What are the major factors which affect the selection of lubricants? B/What are the criteria to classify sliding bearings? C/ Answer of the following: 1. According to the SAE viscosity classification, the oil (SAE 40) is lower viscosity than the oil (SAE 20) at the same temperature. (True or False) 2. For a slow speed-highly loaded bearing, used oils of high viscosity; while for high-speed…arrow_forwardThe uniform rods have a mass per unit length of 10kg/m . (Figure 1)If the dashpot has a damping coefficient of c=50N⋅s/m , and the spring has a stiffness of k=600N/m , show that the system is underdamped, and then find the pendulum's period of oscillation.arrow_forward10-50. The principal plane stresses and associated strains in a plane at a point are σ₁ = 30 ksi, σ₂ = -10 ksi, e₁ = 1.14(10-3), €2=-0.655(103). Determine the modulus of elasticity and Poisson's ratio. emps to plum... Wednesday FI a וח 2 Q Search 48 F5 - F6 4+ F7 FB F9 FIO FII F12 & * S 6 7 8 9 ㅁ F2 # *F3 3 $ 4 F4 % W E R T Y ப S ALT D F G H X C V B N J Σ H L ว { P [ ] ALT " DELETE BACKSPACE NUM LOCK T 7 HOME ENTER 4 PAUSE SHIFT CTRL Earrow_forward
- 10−9. The state of strain at the point has components of ϵx = −100(10−6), ϵy = −200(10−6), and γxy=100(10−6). Use the strain transformation equations to determine (a) the in-plane principal strains and (b) the maximum in-plane shear strain and average normal strain. In each case specify the orientation of the element and show how the strains deform the element within the x−y plane.arrow_forwardThe strain gage is placed on the surface of the steel boiler as shown. If it is 0.5 in. long, determine the pressure in the boiler when the gage elongates 0.2(10−3) in. The boiler has a thickness of 0.5 in. and inner diameter of 60 in. Also, determine the maximum x, y in-plane shear strain in the material. Take Est=29(103)ksi, vst=0.3.arrow_forward(read image, answer given)arrow_forward
- 6/86 The connecting rod AB of a certain internal-combustion engine weighs 1.2 lb with mass center at G and has a radius of gyration about G of 1.12 in. The piston and piston pin A together weigh 1.80 lb. The engine is running at a constant speed of 3000 rev/min, so that the angular velocity of the crank is 3000(2)/60 = 100л rad/sec. Neglect the weights of the components and the force exerted by the gas in the cylinder compared with the dynamic forces generated and calculate the magnitude of the force on the piston pin A for the crank angle 0 = 90°. (Suggestion: Use the alternative moment relation, Eq. 6/3, with B as the moment center.) Answer A = 347 lb 3" 1.3" B 1.7" PROBLEM 6/86arrow_forward6/85 In a study of head injury against the instrument panel of a car during sudden or crash stops where lap belts without shoulder straps or airbags are used, the segmented human model shown in the figure is analyzed. The hip joint O is assumed to remain fixed relative to the car, and the torso above the hip is treated as a rigid body of mass m freely pivoted at O. The center of mass of the torso is at G with the initial position of OG taken as vertical. The radius of gyration of the torso about O is ko. If the car is brought to a sudden stop with a constant deceleration a, determine the speed v relative to the car with which the model's head strikes the instrument panel. Substitute the values m = 50 kg, 7 = 450 mm, r = 800 mm, ko = 550 mm, 0 = 45°, and a = 10g and compute v. Answer v = 11.73 m/s PROBLEM 6/85arrow_forwardUsing AutoCADarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license