Concept explainers
Interpretation:
Given that the methane gas is compressed from
Concept Introduction:
The initial pressure of the gas at the constant temperature can be calculated using Boyle’s law, which states the relationship between pressure and volume of the gas.
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
We two different sets of volume and pressure of the gas is considered, the above equation becomes as follows:
where
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Introduction To General, Organic, And Biochemistry
- 5-33 A certain quantity of helium gas is at a temperature of 27 °C and a pressure of 1.00 atm. What will the new temperature be if its volume is doubled at the same time that its pressure is decreased to one-half its original value?arrow_forwardAmmonia gas is synthesized by combining hydrogen and nitrogen: 3 H2(g) + N2(g) 2 NH3(g) (a) If you want to produce 562 g of NH3, what volume of H2 gas, at 56 C and 745 mm Hg, is required? (b) Nitrogen for this reaction will be obtained from air. What volume of air, measured at 29 C and 745 mm Hg pressure, will be required to provide the nitrogen needed to produce 562 g of NH3? Assume the sample of air contains 78.1 mole % N2.arrow_forwardHow does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forward
- 5-34 A sample of 30.0 mL of krypton gas, Kr, is at 756 mm Hg and 25.0°C. What is the new volume if the pressure is decreased to 325 mm Hg and the temperature is decreased to-12.5°C?arrow_forwardYou have a 550.-mL tank of gas with a pressure of 1.56 atm at 24 C. You thought the gas was pure carbon monoxide gas, CO, but you later found it was contaminated by small quantities of gaseous CO2 and O2. Analysis shows that the tank pressure is 1.34 atm (at 24 C) if the CO2 is removed. Another experiment shows that 0.0870 g of O2 can be removed chemically. What are the masses of CO and CO2 in the tank, and what is the partial pressure of each of the three gases at 25 C?arrow_forward52 If tetraborane, B4H10, is treated with pure oxygen, it burns to give B2O3 and H2O: 2B4H10(s)+11O2(g)4B2O3(s)+10H2O(g) If a 0.050-g sample of tetraborane burns completely in O2, what will be the pressure of the gaseous water in a 4.25-L flask at 30.0 C?arrow_forward
- 47 HCl(g) reacts with ammonia gas, NH3(g), to form solid ammonium chloride. If a sample of ammonia occupying 250 mL at 21 C and a pressure of 140 torr is allowed to react with excess HCl, what mass of NH4Cl will form?arrow_forwardNitroglycerin decomposes into four different gases when detonated: 4 C3H5(NO3)3() 6 N2(g) + O2(g) + 12 CO2(g) + 10 H2O(g) The detonation of a small quantity of nitroglycerin produces a total pressure of 4.2 atm at a temperature of 450 C. (a) What is the partial pressure of N2? (b) If the gases occupy a volume of 1.5 L, what mass of nitroglycerin was detonated?arrow_forward5-56 The three main components of dry air and the percentage of each are nitrogen (78.08%), oxygen (20.95%), and argon (0.93%). (a) Calculate the partial pressure of each gas in a sample of dry air at 760 mm Hg. (b) Calculate the total pressure exerted by these three gases combined.arrow_forward
- A chemist weighed out 5.14 g of a mixture containing unknown amounts of BaO(s) and CaO(s) and placed the sample in a 1.50-L flask containing CO2(g) at 30.0C and 750. torr. After the reaction to form BaCO3(s) and CaCO3(s) was completed, the pressure of CO2(g) remaining was 230. torr. Calculate the mass percentages of CaO(s) and BaO(s) in the mixture.arrow_forwardMethanol (CH3OH) can be produced by the following reaction: CO(g)+2H2(g)CH3OH(g) Hydrogen at STP flows into a reactor at a rate of 16.0 L/min. Carbon monoxide at STP flows into the reactor at a rate of 25.0 L/min. If 5.30 g methanol is produced per minute, what is the percent yield of the reaction?arrow_forwardPlot the data given in Table 5.3 for oxygen at 0C to obtain an accurate molar mass for O2. To do this, calculate a value of the molar mass at each of the given pressures from the ideal gas law (we will call this the apparent molar mass at this pressure). On a graph show the apparent molar mass versus the pressure and extrapolate to find the molar mass at zero pressure. Because the ideal gas law is most accurate at low pressures, this extrapolation will give an accurate value for the molar mass. What is the accurate molar mass?arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning