COLLEGE PHYSICS,VOLUME 1
COLLEGE PHYSICS,VOLUME 1
2nd Edition
ISBN: 9781319115104
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 82QAP
To determine

The coefficient of kinetic friction between the package and the inclined plane, so that the package reaches the bottom with no speed.

Expert Solution & Answer
Check Mark

Answer to Problem 82QAP

The coefficient of kinetic friction between the package and the inclined plane, so that the package reaches the bottom with no speed is 0.382.

Explanation of Solution

Given info:

The mass of the package

  m=2.50-kg

Length of the inclined plane

  Δx=12.0 m

Angle made by the plane to the horizontal

  θ=20.0°

Initial speed of the package

  v0=2.00 m/s

Final speed of the package

  v=0 m/s

Formula used:

A free body diagram of the package is drawn to analyze its motion.

  COLLEGE PHYSICS,VOLUME 1, Chapter 5, Problem 82QAP

Assume a coordinate system, with the +x directed downwards along the incline and +y directed upwards, perpendicular to the incline. The weight w acts vertically downwards, the normal force n acts perpendicular to the incline along the +y direction. The force of kinetic friction fk acts upwards along the incline along the −x direction.

Resolve the weight w along the +x and the −y directions. Use the expression w=mg, where g is the acceleration of free fall and write expressions for the components.

  wx=wsinθ=mgsinθwy=wcosθ=mgcosθ...... (1)

The package is in equilibrium along the y direction.

Therefore,

  Fy=nwy=0

Therefore, using equation (1),

  n=wy=mgcosθ.....(2)

The force of kinetic friction and the normal force are related according to the following equation:

  fk=μkn

From equation (2)

  fk=μkn=μkmgcosθ.....(3)

Write the force equation along the +x direction.

  Fx=wxfk=max

Use the values of wx and fk from equations (2) and (3) in the expression,

  wxfk=maxmgsinθμkmgcosθ=max

Simplify and write an expression for ax.

  ax=g(sinθμkcosθ)......(4)

Use the following equation of motion with equation (4) to determine the coefficient of kinetic friction.

  v2=v02+2axΔx.....(5)

Calculation:

Use the values of the variables in equation (5) and determine the package s acceleration.

  v2=v02+2axΔx(0 m/s)2=(2.00 m/s)2+2ax(12.0 m)ax=( 0 m/s)2( 2.00 m/s)22(12.0 m)=1.67 m/s2

Rewrite equation (4) for μk.

  μk=gsinθaxgcosθ

Substitute the value of ax in the above equation along with the values of other variables and calculate the value of μk.

  μk=gsinθaxgcosθ=(9.80  m/s 2)(sin20.0°)(1.67  m/s 2)(9.80  m/s 2)(cos20.0°)=0.382

Conclusion:

The coefficient of kinetic friction between the package and the inclined plane, so that the package reaches the bottom with no speed is 0.382.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. Two equally strong individuals, wearing exactly the same shoes decide to do a tug of war. The only difference is individual A is 2.5 meters tall and individual B is 1.5 meter tall. Who is more likely to win the tug of war?
6. A car drives at steady speed around a perfectly circular track. (a) The car's acceleration is zero. (b) The net force on the car is zero. (c) Both the acceleration and net force on the car point outward. (d) Both the acceleration and net force on the car point inward. (e) If there is no friction, the acceleration is outward.
9. A spring has a force constant of 100 N/m and an unstretched length of 0.07 m. One end is attached to a post that is free to rotate in the center of a smooth. table, as shown in the top view in the figure below. The other end is attached to a 1kg disc moving in uniform circular motion on the table, which stretches the spring by 0.03 m. Friction is negligible. What is the centripetal force on the disc? Top View (a) 0.3 N (b) 3.0 N (c) 10 N (d) 300 N (e) 1000 N

Chapter 5 Solutions

COLLEGE PHYSICS,VOLUME 1

Ch. 5 - Prob. 11QAPCh. 5 - Prob. 12QAPCh. 5 - Prob. 13QAPCh. 5 - Prob. 14QAPCh. 5 - Prob. 15QAPCh. 5 - Prob. 16QAPCh. 5 - Prob. 17QAPCh. 5 - Prob. 18QAPCh. 5 - Prob. 19QAPCh. 5 - Prob. 20QAPCh. 5 - Prob. 21QAPCh. 5 - Prob. 22QAPCh. 5 - Prob. 23QAPCh. 5 - Prob. 24QAPCh. 5 - Prob. 25QAPCh. 5 - Prob. 26QAPCh. 5 - Prob. 27QAPCh. 5 - Prob. 28QAPCh. 5 - Prob. 29QAPCh. 5 - Prob. 30QAPCh. 5 - Prob. 31QAPCh. 5 - Prob. 32QAPCh. 5 - Prob. 33QAPCh. 5 - Prob. 34QAPCh. 5 - Prob. 35QAPCh. 5 - Prob. 36QAPCh. 5 - Prob. 37QAPCh. 5 - Prob. 38QAPCh. 5 - Prob. 39QAPCh. 5 - Prob. 40QAPCh. 5 - Prob. 41QAPCh. 5 - Prob. 42QAPCh. 5 - Prob. 43QAPCh. 5 - Prob. 44QAPCh. 5 - Prob. 45QAPCh. 5 - Prob. 46QAPCh. 5 - Prob. 47QAPCh. 5 - Prob. 48QAPCh. 5 - Prob. 49QAPCh. 5 - Prob. 50QAPCh. 5 - Prob. 51QAPCh. 5 - Prob. 52QAPCh. 5 - Prob. 53QAPCh. 5 - Prob. 54QAPCh. 5 - Prob. 55QAPCh. 5 - Prob. 56QAPCh. 5 - Prob. 57QAPCh. 5 - Prob. 58QAPCh. 5 - Prob. 59QAPCh. 5 - Prob. 60QAPCh. 5 - Prob. 61QAPCh. 5 - Prob. 62QAPCh. 5 - Prob. 63QAPCh. 5 - Prob. 64QAPCh. 5 - Prob. 65QAPCh. 5 - Prob. 66QAPCh. 5 - Prob. 67QAPCh. 5 - Prob. 68QAPCh. 5 - Prob. 69QAPCh. 5 - Prob. 70QAPCh. 5 - Prob. 71QAPCh. 5 - Prob. 72QAPCh. 5 - Prob. 73QAPCh. 5 - Prob. 74QAPCh. 5 - Prob. 75QAPCh. 5 - Prob. 76QAPCh. 5 - Prob. 77QAPCh. 5 - Prob. 78QAPCh. 5 - Prob. 79QAPCh. 5 - Prob. 80QAPCh. 5 - Prob. 81QAPCh. 5 - Prob. 82QAPCh. 5 - Prob. 83QAPCh. 5 - Prob. 84QAPCh. 5 - Prob. 85QAPCh. 5 - Prob. 86QAPCh. 5 - Prob. 87QAPCh. 5 - Prob. 88QAPCh. 5 - Prob. 89QAPCh. 5 - Prob. 90QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY