![Structural Analysis, Si Edition](https://www.bartleby.com/isbn_cover_images/9781285051505/9781285051505_largeCoverImage.gif)
Concept explainers
Plot the shear diagram, bending moment diagram, axial force diagram, and the qualitative deflected shape of the frame.
![Check Mark](/static/check-mark.png)
Explanation of Solution
Write the condition for static instability, determinacy and indeterminacy of plane frames as follows:
Here, number of members is m, number of external reactions is r, the number of joints is j, and the number of elastic hinges is
Find the degree of static indeterminacy (i) using the equation;
Refer to the Figure in the question;
The number of members (m) is 3.
The number of external reactions (r) is 3.
The number of joints (j) is 4.
The number of elastic hinges
Substitute the values in Equation (2);
Show the equivalence of uniformly distributed load as in Figure 1.
Show the free-body diagram of the entire frame as in Figure 2.
Find the horizontal reaction at point A by resolving the horizontal component of forces.
Find the vertical reaction at point D by taking moment about point A.
Find the vertical reaction at point A by resolving the vertical component of forces.
Show the free-body diagram of the members and joints of the entire frame as in Figure 3.
Consider point A:
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Consider the member AB:
Resolve the vertical component of forces.
Take moment about the point B.
Consider the point D:
Resolve the vertical component of forces.
Consider the member CD:
Resolve the vertical component of forces.
Take moment about the point C.
Resolve the horizontal component of forces.
Consider the point C:
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Take moment about the point C.
Consider the section BC:
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Take moment about point B:
Plot the moment end forces of the frame as in Figure 4.
Refer to the moment end force diagram plot the shear diagram, bending moment diagram, and the axial force diagrams.
Plot the shear force diagram as in Figure 5.
The maximum bending moment occurs where the shear force changes sign.
Consider the section BEC, use the similar triangle concept.
Plot the bending moment diagram as in Figure 6.
Plot the axial force diagram as in Figure 7.
Plot the qualitative deflected shape as in Figure 8.
Want to see more full solutions like this?
Chapter 5 Solutions
Structural Analysis, Si Edition
- A permeability test apparatus of diameter 82.5 mm contains a column of fine sand 460 mm long. When water flows through it under a constant head at a rate of 191 cm3/minute, the loss of head between two points 250 mm apart is 380 mm. Calculate the coefficient of permeability of the fine sand. If falling head test is made on the same sample using a standpipe of diameter of 30 mm, in what time will the water level in standpipe fall from 1560 mm to 1066 mm above outflow level.arrow_forwardComputation must be completeFor the given cantilever beam shown in the figure below,a. Draw the shear and moment diagram using service loads.b. Determine the critical design moment using Working Stress Design (Ma) load combinations.c. Draw the shear and moment diagram using factored loads.d. Determine the critical design moment using Strength Design (Mu) load combinations, use NSCP2015.e. For the given cross-section of the beam, give the reason why the reinforcement is at the topportion of the beam section?arrow_forwardLAB: FORCE AND FORCE-RELATED VARIABLES ASSIGNMENT INSTRUCTIONS INSTRUCTIONS Lab assignments are intended to give you some ‘hands on' experience in applying the concepts introduced in the course text. They are designed to get you out of your classroom or office and develop the skills of designing experiments and collecting data, and then performing calculations, evaluating the results, and communicating your findings. Labs are more than just number crunching - they are about reflecting on what is both practical and technically sound engineering problem-solving. For each problem below, address the scenario presented and develop engineering solutions. Communicate your results using drawings, pictures, and discussion, supported by calculations developed using the Microsoft Equation Editor or similar tool. Submit your lab report in a single pdf file uploaded to the location provided in Canvas before the due date/time indicated. Each problem should be treated as a micro-report with a problem…arrow_forward
- FIND THE INTERNAL MISSING ANGLES AND MISSING SIDESOF A 90° RIGHT TRIANGLE WITH A HEIGHT OF 96 AND A BASE OF 48.DRAW A PROPORTIONAL SKETCH OF THE TRIANGLE, IDENTIFY GIVEN INFORMATIONAND LABEL MISSING INFORMATION. WHAT IS AREA TO THE NEAREST SQ. FT.?arrow_forward2,789.10 FEET = HOW MANY METERS (M)?arrow_forward87.74529° TO DEGREE‐MINUTE‐SECOND FORMATarrow_forward
![Text book image](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)