
Concept explainers
A.
To find: The sequence of the complementary strand of the single-stranded DNA sequence.
5′-GGATTTTTGTCCACAATCA-3′
Concept introduction: Deoxyribonucleic acid (DNA) is the hereditary material found in humans and many other organisms. It is located in every cell nucleus; hence it is called as nuclear DNA. But a little amount of DNA can be also found in the mitochondria, where it is called mitochondrial DNA. The typical structure of a DNA molecule consists of two strands twisting around each other like a twisted ladder. The rails of the ladder are made up of sugar and phosphate molecules in alternative way. The steps are made of two bases linked together with either two or three weak hydrogen bonds. There is only one way the nitrogenous bases can pair up on the rungs of the DNA ladder. An adenine molecule only pairs with a thymine and cytosine only with guanine.
A.

Answer to Problem 5Q
5′-TGATTGTGGACAAAAATCC-3′
Explanation of Solution
Complementary base pairing describes the way in which the nitrogenous bases of the DNA molecules align with each other. Complementary base pairing is also responsible for the double-helix structure of DNA. The double helical structure of DNA consists of A, G, T, C, and the proportion of each of these bases in DNA is not random. The number of adenine bases in the DNA would be always equal to the number of cytosine bases. The rule %A=%T and %C=%G is known as the Chargaff’s rule.
Adenine and guanine are purines, while thymine and cytosine are pyrimidines. A complementary strand of DNA is constructed on the basis of nucleobase complementarity. The base pairs A=T and C=G take up all over the strand enabling a twisted DNA double helix formation. When
B.
To find: The percentage of nucleotides other than adenine in the DNA of bacterial cells.
Concept introduction: Deoxyribonucleic acid (DNA) is the hereditary material found in humans and many other organisms. It is located in every cell nucleus; hence it is called as nuclear DNA. But a little amount of DNA can be also found in the mitochondria, where it is called mitochondrial DNA. The typical structure of a DNA molecule consists of two strands twisting around each other like a twisted ladder. The rails of the ladder are made up of sugar and phosphate molecules in alternative way. The steps are made of two bases linked together with either two or three weak hydrogen bonds. There is only one way the nitrogenous bases can pair up on the rungs of the DNA ladder. An adenine molecule only pairs with a thymine and cytosine only with guanine.
B.

Explanation of Solution
Every DNA strand is made up of four nucleotides. They are adenine, thymine, guanine, and cytosine. The rules of base pairing explain the phenomenon that whatever the amount of adenine (A) is present in the DNA of an organism, the amount of thymine (T) is the same. Similarly, whatever the amount of guanine (G) is present, the amount of cytosine (C) is the same.
Out of the cent percentage of
Thymine = 13%
Cytosine = 37%
Guanine = 37%
C. (a)
To find: How many nucleotide sequences would be there in a stretch of DNA of N nucleotides long if the strand is single
C. (a)

Answer to Problem 5Q
4N Nucleotide sequences.
Explanation of Solution
The nucleotide triplet that encodes an amino acid is called as a codon. Since there are 64 combinations of 4 nucleotides taken three at s time and only 20 amino acids. A triplet code could make a genetic code for 64 different combinations
C. (b)
To find: How many nucleotide sequences would be there in a stretch of DNA of N nucleotides long if the strand is double
C. (b)

Explanation of Solution
To calculate the number of nucleotide sequences in a double-stranded DNA is much more difficult. Many of the 4N single-stranded sequences will formits complement pair. If N is an odd number, every single-stranded DNA sequence will be complement with another sequence, so that the number of double-stranded sequences will be
If N is an odd number;
D.
To find: The average length of the nucleotide sequences, such that the sequence is in an order to make just one cut in a bacterial genome of
Concept introduction: Deoxyribonucleic acid (DNA) is the hereditary material found in humans and many other organisms. It is located in every cell nucleus; hence it is called as nuclear DNA. But a little amount of DNA can be also found in the mitochondria, where it is called mitochondrial DNA. The typical structure of a DNA molecule consists of two strands twisting around each other like a twisted ladder. The rails of the ladder are made up of sugar and phosphate molecules in alternative way. The steps are made of two bases linked together with either two or three weak hydrogen bonds. There is only one way the nitrogenous bases can pair up on the rungs of the DNA ladder. An adenine molecule only pairs with a thymine and cytosine only with guanine.
D.

Explanation of Solution
For a DNA with N nucleotides long, 4N has to be larger than the bacterial genome of
By solving N,
From this, it is clear that DNA sequence withan average length of 11 nucleotides can be unique in the bacterial genome. A relatively small sequence can mark an exclusive position in the genome and is enough to serve as an identity mark for one specific genome.
Sequence with 11-nucleotide length.
Want to see more full solutions like this?
Chapter 5 Solutions
Essential Cell Biology
- There is currently a H5N1 cattle outbreak in North America. According to the CDC on Feb 26*: "A multistate outbreak of HPAI A(H5N1) bird flu in dairy cows was first reported on March 25, 2024. This is the first time that these bird flu viruses had been found in cows. In the United States, since 2022, USDA has reported HPAI A(H5N1) virus detections in more than 200 mammals." List and describe two mechanisms that could lead to this H5N1 influenza strain evolving to spread in human: Mechanisms 1: Mechanisms 2: For the mutations to results in a human epidered they would need to change how the virus interacts with the human host. In the case of mutations that may promote an epidemic, provide an example for: a protein that might incur a mutation: how the mutation would change interactions with cells in the respiratory tract (name the receptor on human cells) List two phenotypic consequence from this mutation that would increase human riskarrow_forwardYou have a bacterial strain with the CMU operon: a) As shown in the image below, the cmu operon encodes a peptide (Pep1), as well as a kinase and regulator corresponding to a two-component system. The cmu operon is activated when Pep 1 is added to the growth media. Pep1 is a peptide that when added extracellularly leads to activation of the Cmu operon. Pep1 cmu-kinase cmu-regulator You also have these genetic components in other strains: b) An alternative sigma factor, with a promoter activated by the cmu-regulator, that control a series of multiple operons that together encode a transformasome (cellular machinery for transformation). c) the gene cl (a repressor). d) the promoter X, which includes a cl binding site (and in the absence of cl is active). e) the gene gp (encoding a green fluorescence protein). Using the cmu operon as a starting point, and assuming you can perform cloning to rearrange any of these genomic features, how would you use one or more of these to modify the…arrow_forwardYou have identified a new species of a Gram-positive bacteria. You would like to screen their genome for all proteins that are covalently linked to the cell wall. You have annotated the genome, so that you identified all the promoters, operons, and genes sequences within the operons. Using these features, what would you screen for to identify a set of candidates for proteins covalently linked to the bacterial cell wall.arrow_forward
- Below is a diagram from a genomic locus of a bacterial genome. Each arrow represents a coding region, and the arrowheads indicate its orientation in the genome. The numbers are randomly assigned. Draw the following features on the diagram, and explain your rationale for each feature: 10 12 合會會會會長 6 a) Expected transcriptions, based on known properties of bacterial genes and operons. How many proteins are encoded in each of the transcripts? b) Location of promoters (include rationale) c) Location of transcriptional terminators (include rationale) d) Locations of Shine-Dalgarno sequences (include rationale)arrow_forwardSample excuse letter in school class for the reasons of headaches and dysmenorrhea caused by menstrual cyclearrow_forwardHow do the muscles on the foot work to balance on an ice skate, specifically the triangle of balance and how does it change when balancing on an ice skate? (Refer to anatomy, be specific)arrow_forward
- Which of the following is NOT an example of passive immunization? A. Administration of tetanus toxoid B. Administration of hepatitis B immunoglobulin C. Administration of rabies immunoglobulin D. Transfer of antibodies via plasma therapyarrow_forwardTranscription and Translation 1. What is the main function of transcription and translation? (2 marks) 2. How is transcription different in eukaryotic and prokaryotic cells? (2 marks) 3. Explain the difference between pre-mRNA and post-transcript mRNA. (2 marks) 4. What is the function of the following: (4 marks) i. the cap ii. spliceosome iii. Poly A tail iv. termination sequence 5. What are advantages to the wobble feature of the genetic code? (2 marks) 6. Explain the difference between the: (3 marks) i. A site & P site ii. codon & anticodon iii. gene expression and gene regulation 7. Explain how the stop codon allows for termination. (1 mark) 8. In your own words, summarize the process of translation. (2 marks)arrow_forwardIn this activity you will research performance enhancers that affect the endocrine system or nervous system. You will submit a 1 page paper on one performance enhancer of your choice. Be sure to include: the specific reason for use the alleged results on improving performance how it works how it affect homeostasis and improves performance any side-effects of this substancearrow_forward
- Neurons and Reflexes 1. Describe the function of the: a) dendrite b) axon c) cell body d) myelin sheath e) nodes of Ranvier f) Schwann cells g) motor neuron, interneuron and sensory neuron 2. List some simple reflexes. Explain why babies are born with simple reflexes. What are they and why are they necessary. 3. Explain why you only feel pain after a few seconds when you touch something very hot but you have already pulled your hand away. 4. What part of the brain receives sensory information? What part of the brain directs you to move your hand away? 5. In your own words describe how the axon fires.arrow_forwardMutations Here is your template DNA strand: CTT TTA TAG TAG ATA CCA CAA AGG 1. Write out the complementary mRNA that matches the DNA above. 2. Write the anticodons and the amino acid sequence. 3. Change the nucleotide in position #15 to C. 4. What type of mutation is this? 5. Repeat steps 1 & 2. 6. How has this change affected the amino acid sequence? 7. Now remove nucleotides 13 through 15. 8. Repeat steps 1 & 2. 9. What type of mutation is this? 0. Do all mutations result in a change in the amino acid sequence? 1. Are all mutations considered bad? 2. The above sequence codes for a genetic disorder called cystic fibrosis (CF). 3. When A is changed to G in position #15, the person does not have CF. When T is changed to C in position #14, the person has the disorder. How could this have originated?arrow_forwardhoose a scientist(s) and research their contribution to our derstanding of DNA structure or replication. Write a one page port and include: their research where they studied and the time period in which they worked their experiments and results the contribution to our understanding of DNA cientists Watson & Crickarrow_forward
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education





