Practical Management Science
6th Edition
ISBN: 9781337671989
Author: WINSTON
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 59P
Summary Introduction
To determine: The strategy to minimize the total cost.
Introduction: In linear programming, the unbounded solution would occur when the objective function is infinite. If no solution satisfied the constraints, then it is said to be unfeasible solution.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Barbara Flynn sells papers at a newspaper stand for $0.40. The papers cost her $0.30, giving her a $0.10 profit on each one she sells. From past experience Barbara
knows that:
a) 20% of the time she sells 150 papers.
b) 20% of the time she sells 200 papers.
c) 30% of the time she sells 250 papers.
d) 30% of the time she sells 300 papers.
Assuming that Barbara believes the cost of a lost sale to be $0.05 and any unsold papers cost her $0.30 and she orders 250 papers.
Use the following random numbers: 14, 4, 13, 9, and 25 for simulating Barbara's profit. (Note: Assume the random number interval begins at 01 and ends at 00.)
Based on the given probability distribution and the order size, for the given random number Barbara's sales and profit are (enter your responses for sales as integers
and round all profit responses to two decimal places):
Random Number
Sales
Profit
14
4
13
9
25
Global Logistics needs to rent space for storing product for the next three years. The following information regarding the demand and spot price is available. Current demand for the product is 150,000. Historically, Global Logistics has required 1500 square feet to store 1500 units of the product. Demand for the product can go up by 20% with a probability of 0.7 or down by 20% with a probability of 0.3. Global Logistics can sign a three-year fixed lease to rent 150,000 square feet of space at $1.00 per square foot per year. The firm may also choose to obtain warehousing space on the spot market. The current spot market price is $1.20 per square foot per year. The spot price can go up by 10% with a probability of 0.8 and can decrease by 10% with a probability of 0.2. The firm receives a revenue of $1.22 for each unit of demand.
a) Create a decision tree showing period 0, 1 and 2 for the scenario described above.
b) Calculate the NPV for the option when the firm decides to sign a…
Your answer is partially correct.
An independent contractor for a transportation company needs to determine whether she should upgrade the vehicle she currently
owns or trade her vehicle in to lease a new vehicle. If she keeps her vehicle, she will need to invest in immediate upgrades that cost
$5,200 and it will cost $1,300 per year to operate at the end of year that follows. She will keep the vehicle for 5 years; at the end of this
period, the upgraded vehicle will have a salvage value of $3,800. Alternatively, she could trade in her vehicle to lease a new vehicle. She
estimates that her current vehicle has a trade-in value of $9,800 and that there will be $4,100 due at lease signing. She further
estimates that it will cost $2,900 per year to lease and operate the vehicle. The independent contractor's MARR is 11%. Compute the
EUAC of both the upgrade and lease alternatives using the insider perspective.
Click here to access the TVM Factor Table Calculator.
1943.56
EUAC(keep):
$…
Chapter 5 Solutions
Practical Management Science
Ch. 5.2 - Prob. 1PCh. 5.2 - Prob. 2PCh. 5.2 - Prob. 3PCh. 5.2 - Prob. 4PCh. 5.2 - Prob. 5PCh. 5.2 - Prob. 6PCh. 5.2 - Prob. 7PCh. 5.2 - Prob. 8PCh. 5.2 - Prob. 9PCh. 5.3 - Prob. 10P
Ch. 5.3 - Prob. 11PCh. 5.3 - Prob. 12PCh. 5.3 - Prob. 13PCh. 5.3 - Prob. 14PCh. 5.3 - Prob. 15PCh. 5.3 - Prob. 16PCh. 5.3 - Prob. 17PCh. 5.3 - Prob. 18PCh. 5.4 - Prob. 19PCh. 5.4 - Prob. 20PCh. 5.4 - Prob. 21PCh. 5.4 - Prob. 22PCh. 5.4 - Prob. 23PCh. 5.4 - Prob. 24PCh. 5.4 - Prob. 25PCh. 5.4 - Prob. 26PCh. 5.4 - Prob. 27PCh. 5.4 - Prob. 28PCh. 5.4 - Prob. 29PCh. 5.5 - Prob. 30PCh. 5.5 - Prob. 31PCh. 5.5 - Prob. 32PCh. 5.5 - Prob. 33PCh. 5.5 - Prob. 34PCh. 5.5 - Prob. 35PCh. 5.5 - Prob. 36PCh. 5.5 - Prob. 37PCh. 5.5 - Prob. 38PCh. 5 - Prob. 42PCh. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Prob. 46PCh. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Prob. 58PCh. 5 - Prob. 59PCh. 5 - Prob. 60PCh. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Prob. 71PCh. 5 - Prob. 72PCh. 5 - Prob. 73PCh. 5 - Prob. 74PCh. 5 - Prob. 75PCh. 5 - Prob. 76PCh. 5 - Prob. 77PCh. 5 - Prob. 80PCh. 5 - Prob. 81PCh. 5 - Prob. 82PCh. 5 - Prob. 83PCh. 5 - Prob. 85PCh. 5 - Prob. 86PCh. 5 - Prob. 87PCh. 5 - Prob. 1C
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Assume the demand for a companys drug Wozac during the current year is 50,000, and assume demand will grow at 5% a year. If the company builds a plant that can produce x units of Wozac per year, it will cost 16x. Each unit of Wozac is sold for 3. Each unit of Wozac produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. Determine how large a Wozac plant the company should build to maximize its expected profit over the next 10 years.arrow_forwardIt costs a pharmaceutical company 75,000 to produce a 1000-pound batch of a drug. The average yield from a batch is unknown but the best case is 90% yield (that is, 900 pounds of good drug will be produced), the most likely case is 85% yield, and the worst case is 70% yield. The annual demand for the drug is unknown, with the best case being 20,000 pounds, the most likely case 17,500 pounds, and the worst case 10,000 pounds. The drug sells for 125 per pound and leftover amounts of the drug can be sold for 30 per pound. To maximize annual expected profit, how many batches of the drug should the company produce? You can assume that it will produce the batches only once, before demand for the drug is known.arrow_forwardThe Tinkan Company produces one-pound cans for the Canadian salmon industry. Each year the salmon spawn during a 24-hour period and must be canned immediately. Tinkan has the following agreement with the salmon industry. The company can deliver as many cans as it chooses. Then the salmon are caught. For each can by which Tinkan falls short of the salmon industrys needs, the company pays the industry a 2 penalty. Cans cost Tinkan 1 to produce and are sold by Tinkan for 2 per can. If any cans are left over, they are returned to Tinkan and the company reimburses the industry 2 for each extra can. These extra cans are put in storage for next year. Each year a can is held in storage, a carrying cost equal to 20% of the cans production cost is incurred. It is well known that the number of salmon harvested during a year is strongly related to the number of salmon harvested the previous year. In fact, using past data, Tinkan estimates that the harvest size in year t, Ht (measured in the number of cans required), is related to the harvest size in the previous year, Ht1, by the equation Ht = Ht1et where et is normally distributed with mean 1.02 and standard deviation 0.10. Tinkan plans to use the following production strategy. For some value of x, it produces enough cans at the beginning of year t to bring its inventory up to x+Ht, where Ht is the predicted harvest size in year t. Then it delivers these cans to the salmon industry. For example, if it uses x = 100,000, the predicted harvest size is 500,000 cans, and 80,000 cans are already in inventory, then Tinkan produces and delivers 520,000 cans. Given that the harvest size for the previous year was 550,000 cans, use simulation to help Tinkan develop a production strategy that maximizes its expected profit over the next 20 years. Assume that the company begins year 1 with an initial inventory of 300,000 cans.arrow_forward
- You now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.arrow_forwardA young computer engineer has $12,000 to invest and three different investment options (funds) to choose from. Type 1 guaranteed investment funds offer an expected rate of return of 7%, Type 2 mixed funds (part is guaranteed capital) have an expected rate of return of 8%, while an investment on the Stock Exchange involves an expected rate of return of 12%, but without guaranteed investment capital. Computer engineer has decided not to invest more than $2,000 on the Stock Exchange in order to minimize the risk. Moreover for tax reasons, she needs to invest at least three times more in guaranteed investment funds than in mixed funds. Assume that at the end of the year the returns are those expected; she is trying to determine the optimum investment amounts. (a) Express this problem as a linear programming model with two decision variables.(b) Solve the problem with the graphical solution procedure and define the optimum solution.arrow_forwardM2,arrow_forward
- JayZee Electronics wanted to expand its operations by considering of putting up another warehouse to store their electronic supplies from different suppliers. The table below shows the payoff for all alternatives available for JayZee Electronics in all 3 states of nature. The probabilities for every state of nature is also provided. Size of the Warehouse Good Market ($) Fair Market ($) Poor Market ($) Small 40,000 -10,000 -20,000 18,000 Medium 80,000 90,000 Large Very Large -40,000 -160,000 100,000 175,000 350,000 25,000 Probabilities 0.35 0.45 0.20 Using Decision Making under Uncertainty (Use Sheet 1 and rename it to Lastname_Uncertainty) (a) Develop a decision table for this decision. (b) What is the maximax decision? (c) What is the maximin decision? (d) What is the equally likely decision? (e) What is the criterion of realism decision? Use an a value of 0.8. (f) Develop an opportunity loss table. (g) What is the minimax regret decision? Using Decision Making under Risk (Use Sheet 1…arrow_forwardAt a small but growing airport, the local airline company is purchasing a new tractor for a tractor-trailer train to bring luggage to and from the airplanes. A new mechanized luggage system will be installed in 3 years, so the tractor will not be needed after that. However, because it will receive heavy use, so that the running and maintenance costs will increase rapidly as the tractor ages, it may still be more economical to replace the tractor after 1 or 2 years. The following table gives the total net discounted cost associated with purchasing a tractor (purchase price minus trade-in allowance, plus running and maintenance costs) at the end of year i and trading it in at the end of year j (where year O is now). i 012 1 $13,000 j 2 $28,000 $17,000 3 $48,000 $33,000 $20,000 The problem is to determine at what times (if any) the tractor should be replaced to minimize the total cost for the tractors over 3 years. (a) Formulate this problem as a minimum cost flow problem by showing the…arrow_forwardAt a small but growing airport, the local airline company is purchasing a new tractor for a tractor-trailer train to bring luggage to and from the airplanes. A new mechanized luggage system will be installed in 3 years, so the tractor will not be needed after that. However, because it will receive heavy use, so that the running and maintenance costs will increase rapidly as the tractor ages, it may still be more economical to replace the tractor after 1 or 2 years. The following table gives the total net discounted cost associated with purchasing a tractor (purchase price minus trade-in allowance, plus running and maintenance costs) at the end of year i and trading it in at the end of year j (where year O is now). i B 012 1 $13,000 j 2 $28,000 $17,000 3 $48,000 $33,000 $20,000 The problem is to determine at what times (if any) the tractor should be replaced to minimize the total cost for the tractors over 3 years. (a) Formulate this problem as a shortest-path problem by drawing a…arrow_forward
- A building has an NOI of $130,000 and is being valued with a cap rate of 4%. Using the income approach, what is the value of the building? $4,130,000 $1,300,000 $3,250,000 $2,450,000arrow_forwardA professional photographer who specializes in wedding-related activities paid $48,000 for equipment that will have a $2000 salvage value after 5 years. He estimates that his costs associated with each event amount to $65 per day. If he charges $300 per day for his services, how many days per year must he be employed in order to break even at an interest rate of 8% per year?arrow_forwardWilliams Auto has a machine that installs tires. The machine is now in need of repair. The machineoriginally cost $10,000 and the repair will cost $1,000, but the machine will then last two years.The labor cost of operating the machine is $0.50 per tire. Instead of repairing the old machine,Williams could buy a new machine at a cost of $5,000 that would also last two years; the labor costwould then be reduced to $0.25 per tire. Should Williams repair or replace the machine if it expectsto install 10,000 tires in the next two years?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,