From the given condition, the temperature and pressure of a container filled with 175g argon should be determined. Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, PV = nRT Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0.08206 L ⋅ a t m / K ⋅ m o l ) T = temperature in kelvins By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation.
From the given condition, the temperature and pressure of a container filled with 175g argon should be determined. Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, PV = nRT Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0.08206 L ⋅ a t m / K ⋅ m o l ) T = temperature in kelvins By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation.
Solution Summary: The author explains how the temperature and pressure of a container filled with 175g argon should be determined by combining the three gaseous laws.
Definition Definition Number of atoms/molecules present in one mole of any substance. Avogadro's number is a constant. Its value is 6.02214076 × 10 23 per mole.
Chapter 5, Problem 57E
a)
Interpretation Introduction
Interpretation: From the given condition, the temperature and pressure of a container filled with 175g argon should be determined.
Concept introduction:
By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law.
According to ideal gas law,
PV=nRT
Where,
P = pressure in atmospheres
V= volumes in liters
n = number of moles
R =universal gas constant (
0.08206L⋅atm/K⋅mol)
T = temperature in kelvins
By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation.
(b)
Interpretation Introduction
Interpretation: From the given condition, the temperature and pressure of a container filled with 175g argon should be determined.
Concept introduction:
By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law.
According to ideal gas law,
PV=nRT
Where,
P = pressure in atmospheres
V= volumes in liters
n = number of moles
R =universal gas constant (
0.08206L⋅atm/K⋅mol)
T = temperature in kelvins
By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.