MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5.70P
(a)
To determine
The value of the
(b)
To determine
The value of the following parameters for the given base circuit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the critical points and sketch the VTC.We have to find vtc so no need of vin.
Q5. Refer to the circuit in Figure Q5.
21y
92
20v
Figure Q5
Using a circuit analysis technique with which you are familiar, determine the
current through each resistor.
Develop a Verilog HDL design of the circuit provided. Show your HDL code as well as the simulation results.
Chapter 5 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Ch. 5 - An npn transistor is biased in the forwardactive...Ch. 5 - (a) The common-emitter current gains of two...Ch. 5 - An npn transistor is biased in the forwardactive...Ch. 5 - The emitter current in a pnp transistor biased in...Ch. 5 - The output resistance of a bipolar transistor is...Ch. 5 - Assume that IC=1mA at VCE=1V , and that VBE is...Ch. 5 - The openemitter breakdown voltage is BVCBO=200V ,...Ch. 5 - A particular transistor circuit requires a minimum...Ch. 5 - The circuit elements in Figure 5.20(a) are changed...Ch. 5 - The circuit elements in Figure 5.22(a) are V+=3.3V...
Ch. 5 - (a) Verify the results of Example 5.3 with a...Ch. 5 - Consider the pnp circuit in Figure 5.22(a). Assume...Ch. 5 - In the following exercise problems, assume...Ch. 5 - In the following exercise problems, assume...Ch. 5 - The circuit elements in Figure 5.27(a) are changed...Ch. 5 - Using a PSpice simulation, plot the voltage...Ch. 5 - The parameters of the circuit shown in Figure...Ch. 5 - Design the commonbase circuit shown in Figure 5.33...Ch. 5 - The bias voltages in the circuit shown in Figure...Ch. 5 - The bias voltages in the circuit shown in Figure...Ch. 5 - The circuit elements in Figure 5.36(a) are V+=5V ,...Ch. 5 - For the transistor shown in the circuit of Figure...Ch. 5 - For the circuit shown in Figure 5.41, determine...Ch. 5 - Assume =120 for the transistor in Figure 5.42....Ch. 5 - For the transistor in Figure 5.43, assume =90 ....Ch. 5 - (a) Redesign the LED circuit in Figure 5.45(a)...Ch. 5 - The transistor parameters in the circuit in Figure...Ch. 5 - Redesign the inverter amplifier circuit shown in...Ch. 5 - For the circuit shown in Figure 5.44, assume...Ch. 5 - Consider the circuit shown in Figure 5.51(b)....Ch. 5 - [Note: In the following exercises, assume the BE...Ch. 5 - [Note: In the following exercises, assume the B—E...Ch. 5 - Consider the circuit in Figure 5.54(a), let...Ch. 5 - Prob. 5.16EPCh. 5 - The parameters of the circuit shown in Figure...Ch. 5 - Consider the circuit in Figure 5.54(a). The...Ch. 5 - Consider the circuit shown in Figure 5.58. The...Ch. 5 - In the circuit shown in Figure 5.60, the...Ch. 5 - The parameters of the circuit shown in Figure...Ch. 5 - For Figure 5.59, the circuit parameters are...Ch. 5 - In the circuit shown in Figure 5.61, determine new...Ch. 5 - For the circuit shown in Figure 5.63, the circuit...Ch. 5 - (a) Verily the cascode circuit design in Example...Ch. 5 - Prob. 1RQCh. 5 - Prob. 2RQCh. 5 - Prob. 3RQCh. 5 - Define commonbase current gain and commonemitter...Ch. 5 - Discuss the difference between the ac and dc...Ch. 5 - State the relationships between collector,...Ch. 5 - Define Early voltage and collector output...Ch. 5 - Describe a simple commonemitter circuit with an...Ch. 5 - Prob. 9RQCh. 5 - Prob. 10RQCh. 5 - Prob. 11RQCh. 5 - Describe a bipolar transistor NOR logic circuit.Ch. 5 - Describe how a transistor can be used to amplify a...Ch. 5 - Discuss the advantages of using resistor voltage...Ch. 5 - Prob. 15RQCh. 5 - Prob. 16RQCh. 5 - (a) In a bipolar transistor biased in the...Ch. 5 - (a) A bipolar transistor is biased in the...Ch. 5 - (a) The range of ( for a particular type of...Ch. 5 - (a) A bipolar transistor is biased in the...Ch. 5 - Prob. 5.5PCh. 5 - An npn transistor with =80 is connected in a...Ch. 5 - Prob. 5.7PCh. 5 - A pnp transistor with =60 is connected in a...Ch. 5 - (a) The pnp transistor shown in Figure P5.8 has a...Ch. 5 - An npn transistor has a reverse-saturation current...Ch. 5 - Two pnp transistors, fabricated with the same...Ch. 5 - The collector currents in two transistors, A and...Ch. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - In a particular circuit application, the minimum...Ch. 5 - A particular transistor circuit design requires a...Ch. 5 - For all the transistors in Figure P5.17, =75 . The...Ch. 5 - The emitter resistor values in the circuits show...Ch. 5 - Consider the two circuits in Figure P5.19. The...Ch. 5 - The current gain for each transistor in the...Ch. 5 - Consider the circuits in Figure P5.21. For each...Ch. 5 - (a) The circuit and transistor parameters for the...Ch. 5 - In the circuits shown in Figure P5.23, the values...Ch. 5 - (a) For the circuit in Figure P5.24, determine VB...Ch. 5 - (a) The bias voltages in the circuit shown in...Ch. 5 - The transistor shown in Figure P5.26 has =120 ....Ch. 5 - The transistor in the circuit shown in Figure...Ch. 5 - In the circuit in Figure P5.27, the constant...Ch. 5 - For the circuit shown in Figure P5.29, if =200 for...Ch. 5 - The circuit shown in Figure P5.30 is to be...Ch. 5 - (a) The bias voltage in the circuit in Figure P5.3...Ch. 5 - The current gain of the transistor in the circuit...Ch. 5 - (a) The current gain of the transistor in Figure...Ch. 5 - (a) The transistor shown in Figure P5.34 has =100...Ch. 5 - Assume =120 for the transistor in the circuit...Ch. 5 - For the circuit shown in Figure P5.27, calculate...Ch. 5 - Consider the commonbase circuit shown in Figure...Ch. 5 - (a) For the transistor in Figure P5.38, =80 ....Ch. 5 - Let =25 for the transistor in the circuit shown in...Ch. 5 - (a) The circuit shown in Figure P5.40 is to be...Ch. 5 - The circuit shown in Figure P5.41 is sometimes...Ch. 5 - The transistor in Figure P5.42 has =120 . (a)...Ch. 5 - The commonemitter current gain of the transistor...Ch. 5 - For the circuit shown in Figure P5.44, plot the...Ch. 5 - The transistor in the circuit shown in Figure...Ch. 5 - Consider the circuit in Figure P5.46. For the...Ch. 5 - The current gain for the transistor in the circuit...Ch. 5 - Consider the amplifier circuit shown in Figure...Ch. 5 - For the transistor in the circuit shown in Figure...Ch. 5 - Reconsider Figure P5.49. The transistor current...Ch. 5 - The current gain of the transistor shown in the...Ch. 5 - For the circuit shown in Figure P5.52, let =125 ....Ch. 5 - Consider the circuit shown in Figure P5.53. (a)...Ch. 5 - (a) Redesign the circuit shown in Figure P5.49...Ch. 5 - Prob. 5.55PCh. 5 - Consider the circuit shown in Figure P5.56. (a)...Ch. 5 - (a) Determine the Q-point values for the circuit...Ch. 5 - (a) Determine the Q-point values for the circuit...Ch. 5 - (a) For the circuit shown in Figure P5.59, design...Ch. 5 - Design a bias-stable circuit in the form of Figure...Ch. 5 - Using the circuit in Figure P5.61, design a...Ch. 5 - For the circuit shown in Figure P5.61, the bias...Ch. 5 - (a) A bias-stable circuit with the configuration...Ch. 5 - (a) For the circuit shown in Figure P5.64, assume...Ch. 5 - The dc load line and Q-point of the circuit in...Ch. 5 - The range of ß for the transistor in the circuit...Ch. 5 - The nominal Q-point of the circuit in Figure P5.67...Ch. 5 - (a) For the circuit in Figure P5.67, the value of...Ch. 5 - For the circuit in Figure P5.69, let =100 and...Ch. 5 - Prob. 5.70PCh. 5 - Design the circuit in Figure P5.70 to be bias...Ch. 5 - Consider the circuit shown in Figure P5.72. (a)...Ch. 5 - For the circuit in Figure P5.73, let =100 . (a)...Ch. 5 - Prob. D5.74PCh. 5 - (a) Design a fourresistor bias network with the...Ch. 5 - (a) Design a four-resistor bias network with the...Ch. 5 - (a) A fourresistor bias network is to be designed...Ch. 5 - (a) Design a fourresistor bias network with the...Ch. 5 - For each transistor in the circuit in Figure...Ch. 5 - The parameters for each transistor in the circuit...Ch. 5 - The bias voltage in the circuit shown in Figure...Ch. 5 - Consider the circuit shown in Figure P5.82. The...Ch. 5 - (a) For the transistors in the circuit shown in...Ch. 5 - Using a computer simulation, plot VCE versus V1...Ch. 5 - Using a computer simulation, verify the results of...Ch. 5 - Using a computer simulation, verify the results of...Ch. 5 - Consider a commonemitter circuit with the...Ch. 5 - The emitterfollower circuit shown in Figure P5.89...Ch. 5 - The bias voltages for the circuit in Figure...Ch. 5 - The multitransistor circuit in Figure 5.61 is to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5.48 plzarrow_forwardIn the circuit given in the figure, Rk = 2.74Kohm, R1 = 4650.00Kohm, R2 = 5350.00Kohm, R3 = 1.69Kohm, R4 = 0.56Kohm, R5 = 18.23ohm, Ry = 93.30Kohm, VCC = 10.000V, VTN = 2.93V, Kn = Since it is 5.87(mA/V^2), C1= 6.87UF, C2=11.87uF, C3=11.69uF, calculate the lower cutoff frequency of the %3D circuit in Hz. When making your transactions, 2 digits will be taken after the dot. Write your result in Hz according to + 10% margin of error. While writing the answer, values such as spaces (Hz, KHz) etc. should not be written in front of the value and behind it. Only numeric values should be entered. A period (.) should be used as a decimal separator. An example notation is given below. Let the value you find be 1.15K. You should write 1150.00 in the box. Let the value you find be 432.6. You should write 432.63 in the box. If the correct answer is X, values entered in the range of X+ (X*10/100) (including limits) will be accepted. If x=50, it will be accepted as between [45,55]. vcc R1 R3 C3 Vo Q1…arrow_forwardThe npn transistor is connected in a “diode” configuration. Use the transport modelequations to show that the i-v characteristics of thisconnection are similar to those of a diode as defined. What is the reverse saturation currentof this “diode” if IS = 4 × 10−15 A, βF = 100, andβR = 0.25?arrow_forward
- 6. A simple ohmmeter can be constructed from an ammeter as shown in Figure P5.6. In this design the measured resistance is given by the equation R 10/1 1 k2. If this ohmmeter is used to measure the forward resistance of a signal diode, the measurement will typically be about 100 2 when Ry is really closer to 1 2. Explain with a current versus voltage diagram. Ohmmeter 10 V + I 1 ΚΩ I Figure P5.6 Unknown A Barrow_forwardIn the circuit given in the figure, Rk = 1.48Kohm, R1 = 7964.99Kohm, R2 = 7035.01Kohm, R3 = 2.46Kohm, R4 = 0.82Kohm, R5 = 24.08ohm, Ry = 98.63Kohm, VCC = 15.00V, VTN = 2.45V, Kn = Since 3.28(mA/V^2), C1= 6.30uF, C2=14.98uF, C3=10.96uF, calculate the lower cutoff frequency of the circuit in Hz. When making your transactions, 2 digits will be taken after the dot.arrow_forwardIn the circuit given in the figure, Rk = 1.48Kohm, R1 = 7964.99Kohm, R2 = 7035.01Kohm, R3 = 2.46Kohm, R4 = 0.82Kohm, R5 = 24.08ohm, Ry = 98.63Kohm, VCC = 15.00V, VTN = 2.45V, Kn = Since 3.28(mA/V^2), C1= 6.30uF, C2=14.98uF, C3=10.96uF, calculate the lower cutoff frequency of the circuit in Hz.arrow_forward
- In the circuit given in the figure, Rk = 7.34Kohm, R1 = 1487.50Kohm, R2 = 1845.84Kohm, R3 = 1.61Kohm, R4 = 0.54Kohm, R5 = 19.05ohm, Ry = 91.57Kohm, VCC = 10.00V, VTN = 2.85V, Kn = Since it is 2.44(mA/V^2), C1=10.04uF, C2=13.81uF, C3=14.07UF, calculate the lower cutoff frequency of the circuit in Hz. When making your transactions, 2 digits will be taken after the dot. Write your result in Hz according to + 10% margin of error. While writing the answer, values such as spaces (Hz, KHz) etc. should not be written in front of the value and behind it. Only numeric values should be entered. A period (.) should be used as a decimal separator. An example notation is given below. Let the value you find be 1.15K. You should write 1150.00 in the box. Let the value you find be 432.6. You should write 432.63 in the box. If the correct answer is X, values entered in the range of X ± (X*10/100) (including limits) will be accepted. If x=50, it will be accepted as between [45,55]. VCc R1 R3 C3 VO Q1 Ry…arrow_forwardThe subject is Basic Electronics.arrow_forwardR +Vcc -Vcc C Vout R R a. Quantify how the resistors and the capacitor influence the output voltage of the circuit, Vout. What are the upper and lower limits of Vc? b. Howlong does it take for the capacitor to be charged from minimum to maximum voltage and vice versa?arrow_forward
- Figure P 5.25 According to the given equation and given circuit find V. (ignore 1) 21 V: + V n Figure P5.25arrow_forwardPlease help mearrow_forwardIn the circuit given in the figure, Rk = 3.87Kohm, R1 = 5475.00Kohm, R2 = 6525.00Kohm, R3 = 1.90Kohm, R4 = 0.63Kohm, R5 = 22.19ohm, Ry = 82.97Kohm, VCC = 12.00V, VTN = 2.82V, Kn = Since it is 5.13(mA/V^2), C1= 5.56uF, C2=13.32uF, C3= 7.43uF, calculate the lower cutoff frequency of the circuit in Hz.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,