STEEL DESIGN W/ ACCESS
STEEL DESIGN W/ ACCESS
6th Edition
ISBN: 9781337761499
Author: Segui
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 5.5.1P
To determine

(a)

Maximum permissible load using LFRD method.

Expert Solution
Check Mark

Answer to Problem 5.5.1P

The maximum permissible load from LFRD method is P=29.34kips-ft.

Explanation of Solution

Given information:

A W 10X 77 has continuous lateral support. The load P is a service live load and Fy=50ksi.

Following is the given beam:

STEEL DESIGN W/ ACCESS, Chapter 5, Problem 5.5.1P , additional homework tip  1

Calculation:

We have following properties for W 10X 77 from ASIC manual

DesignationImperial (in x lb/ft) Depth h (in) Width w (in) Web Thickness tw (in) Flange Thickness tf (in) Sectional Area (in2) Weight (lbf/ft) Static Parameters
Moment of Inertia Elastic Section Modulus
Ix (in4) Iy (in4) Sx (in3) Sy (in3)
W 10 x 77 10.60 10.190 0.530 0.870 22.6 77 455 154 85.9 30.1

Let’s check for the compactness of the given W-shape beam using part 1 of ASIC manual

For Flange:

bf2×tf<0.38×[EFy]

Where, Fy is the characteristic strength of steel, E is the modulus of elasticity, bf is the width of flange and tf is the thickness of the flange.

If the above condition satisfies, then the flange is non compact for flexure

Substitute 29000 for E, 50 for Fybf2tf<0.38EFy10.1902×0.870<0.38×29000505.86<9.15Therefore, flange is compact.So, the condition to check whether a web is non compact for flexurehtw<0.376EFy10.600.530<0.376290005020<90.6.

Therefore, the web is compact.

Calculate the nominal flexural strength using the formula

Mn=Mp=FyZx

Where, Z is the plastic modulus of W-section and is equal to 96.66in3, it could be found in ASIC

Manual.

Substitute 96.66in3 for Zx,50ksi for FyMn=Mp=FyZx Mn=Mp=FyZx =50ksi(96.66in3)

Mn=FyZx=4833in-kips

Mn=FyZx=402.75ft-kips.

Now, calculate the maximum bending moment due to dead load, we have

wD=77lbft

Maximum bending moment for a simply supported beam carrying a dead UDL

MD=(wD×l2)8

Where, wD is uniformly distributed load and l is the length of the beam.

Substitute, wD=77lbft and l=30ft.

MD=(wD×l2)8.

MD=(77lbft×(30ft)2)8MD=(0.077Kipsft×900ft2)8MD=(69.30Kipsft)8MD=8.6625Kipsft.

Calculate the maximum bending moment for a simply supported beam carrying a concentrated

live load of the beam:

ML=P×l4

Where, P is the concentrated load and L is the length of the beam is.

ML=P×l4ML=P×304kips.ftML=(7.5P)kips.ft.

Now, using Load Resistance and Factored design method:

Calculate the maximum permissible load P.

Mu=(1.2×MD)+(1.6×ML)

Substitute MD=8.6625Kipsft and ML=(7.5P)kips.ft

Mu=(1.2×MD)+(1.6×ML)Mu=(1.2×8.6625Kipsft)+(1.6×(7.5P)kips.ft)

Calculate P, by equating the maximum bending moment with the flexural strength of the beam;

Mu=(ϕb×Mn)

Where, ϕb is the resistance factor.

Substitute Mn=402.75ft-kips and Mu=(1.2×8.6625Kipsft)+(1.6×(7.5P)kips.ft).

Mu=(ϕb×Mn)(1.2×8.6625Kipsft)+(1.6×(7.5P)kips.ft)=(0.90×402.75ft-kips)10.395Kipsft+12×PKipsft=362.475kips-ft.362.475kips-ft10.395Kipsft=12×PKipsft.352.08kips-ft=12×PKipsft.P=352.08kips-ft12P=29.34kips-ft.

Conclusion:

Therefore, the maximum permissible load from LFRD method is P=29.34kips-ft.

To determine

(b)

Maximum permissible load using ASD method.

Expert Solution
Check Mark

Answer to Problem 5.5.1P

The maximum permissible load from ASD method is P=31.00kips-ft.

Explanation of Solution

Given information:

A W 10X 77 has continuous lateral support. The load P is a service live load and Fy=50ksi. Following is the given beam

STEEL DESIGN W/ ACCESS, Chapter 5, Problem 5.5.1P , additional homework tip  2

Calculation:

We have following properties for W 10X 77 from ASIC manual

DesignationImperial (in x lb/ft) Depthh (in) Widthw (in) Web Thicknesstw (in) Flange Thicknesstf (in) Sectional Area (in2) Weight (lbf/ft) Static Parameters
Moment of Inertia Elastic Section Modulus
Ix (in4) Iy (in4) Sx (in3) Sy (in3)
W 10 x 77 10.60 10.190 0.530 0.870 22.6 77 455 154 85.9 30.1

Let’s check for the compactness of the given W-shape beam using part 1 of ASIC manual

For Flange:

bf2×tf<0.38×[EFy]

Where, Fy is the characteristic strength of steel, E is the modulus of elasticity, bf is the width of flange and tf is the thickness of the flange.

If the above condition satisfies, then the flange is non compact for flexure

Substitute 29000 for E, 50 for Fybf2tf<0.38EFy10.1902×0.870<0.38×29000505.86<9.15Therefore, flange is compact.So, the condition to check whether a web is non compact for flexurehtw<0.376EFy10.600.530<0.376290005020<90.6.

Therefore, the web is compact.

Calculate the nominal flexural strength using the formula

Mn=Mp=FyZx

Substitute 96.66in3 for Zx,50ksi for FyMn=Mp=FyZx Mn=Mp=FyZx =50ksi(96.66in3)

Mn=FyZx=4833in-kips

Mn=FyZx=402.75ft-kips.

Now, calculate the maximum bending moment due to dead load, we have

wD=77lbft as per the properties of the given section.

Maximum bending moment for a simply supported beam carrying a dead UDL

MD=(wD×l2)8

Where, wD is uniformly distributed load and l is the length of the beam.

Substitute, wD=77lbft and l=30ft.

MD=(wD×l2)8.

MD=(77lbft×(30ft)2)8MD=(0.077Kipsft×900ft2)8MD=(69.30Kipsft)8MD=8.6625Kipsft.

Calculate the maximum bending moment for a simply supported beam carrying a concentrated

live load of the beam:

ML=P×l4

Where, P is the concentrated load and L is the length of the beam is.

ML=P×l4ML=P×304kips.ftML=(7.5P)kips.ft.

Calculate the uniformly distributed load on the beam by equating

Allowable stress design method:

Ma=MD+ML

Substitute MD=8.6625Kipsft and ML=(7.5P)kips.ft

Ma=MD+MLMa=8.6625Kipsft+(7.5P)kips.ft.

Calculate P, by equating the maximum bending moment with the flexural strength of the beam:

Ma=MnΩb

Substitute, Ma=8.6625Kipsft+(7.5P)kips.ft., Mn=402.75ft-kips and Ωb=1.67.

Ma=MnΩ8.6625kipsft+(7.5P)kips.ft=402.75ft-kips1.678.6625kipsft+(7.5P)kips.ft=241.167ft-kips7.5Pkips.ft=241.167ft-kips8.6625kipsft7.5Pkips.ft=232.51ft-kips.P=232.51ft-kips7.5.P=31.00kips.ft.

Conclusion:

Therefore, the maximum permissible load from ASD method is P=31.00kips-ft.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2 1d/T₁₂ = 1/2 n First impulse E ("œw / ])÷(1) '7 J-1 -1- -2+ 0 0.5 1 1.5 2
Bars AD and CE (E=105 GPa, a = 20.9×10-6 °C) support a rigid bar ABC carrying a linearly increasing distributed load as shown. The temperature of Bar CE was then raised by 40°C while the temperature of Bar AD remained unchanged. If Bar AD has a cross-sectional area of 200 mm² while CE has 150 mm², determine the following: the normal force in bar AD, the normal force in bar CE, and the vertical displacement at Point A. D 0.4 m -0.8 m A -0.4 m- B -0.8 m- E 0.8 m C 18 kN/m
Draw the updated network. Calculate the new project completion date. Check if there are changes to the completion date and/or to the critical path. Mention the causes for such changes, if any. New network based on the new information received after 15 days (Correct calculations, professionally done). Mention if critical path changes or extended. Write causes for change in critical path or extension in the critical path.

Chapter 5 Solutions

STEEL DESIGN W/ ACCESS

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning