STEEL DESIGN W/ ACCESS
STEEL DESIGN W/ ACCESS
6th Edition
ISBN: 9781337761499
Author: Segui
Publisher: CENGAGE L
Question
Book Icon
Chapter 5, Problem 5.5.14P
To determine

(a)

Whether a MC18×58 is adequate or not, by using LRFD

Expert Solution
Check Mark

Answer to Problem 5.5.14P

Inadequate

Explanation of Solution

Given:

Fy = 36 ksi

STEEL DESIGN W/ ACCESS, Chapter 5, Problem 5.5.14P , additional homework tip  1

Formula used:

Lp=1.76ryEFy

Lpis unbraced length in an inelastic behavior

c=h02IyCw

Lr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2

Lris unbraced length in an elastic behavior

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp

Mn is nominal moment strength

Mpis plastic moment capacity

Calculation:

All channel shapes in the Manual are compact.(There are no footnotes to indicate otherwise)

For an MC18×58,

A=17.1in.2d=18in.tf=0.625in.rts=1.35in.h0=17.4in.Sx=75in.3Zx=95.4in.3Iy=17.6in.4ry=1.02in.J=2.81in.4Cw=1070in.6

A is Cross-sectional area

Sxis Elastic section modulus about X -axis

Zxis Plastic section modulus about X -axis

Iyis Moment of inertia about Y -axis

ryis Radius of gyration about Y -axis

Syis Elastic section modulus about Y -axis

rts is IyCwSx

Cwis Warping constant

h0is Distance between centroid of flanges

J is Torsional moment of inertia

Lp=1.76ryEFy=1.76(1.02)2900036=50.95in.=4.25ft

For channels,

c=h02IyCw=17.4217.61070=1.116Lr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2=1.95(1.35)290000.7(36)2.81×1.11675×17.4+(2.81×1.11675×17.4)2+6.76(0.7(36)29000)2=228.747in.=19.06ft.

For Lb=14ft, Lp<Lb<Lr so

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp (Inelastic Lateral torsional buckling)

From the below given figure in the textbook, Cb=1.32

STEEL DESIGN W/ ACCESS, Chapter 5, Problem 5.5.14P , additional homework tip  2

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp (Inelastic Lateral torsional buckling)

Mp=FyZx=36(95.4)=3434.4inkips=286.2ftkipsMn=1.32[3434.4(3434.40.7×36×75)(144.2519.064.25)]=1642.424inkips=136.87ftkips<MpϕbMn=0.90(136.87)=123.182ftkipsMu=wuL28+PuL4=1.2×0.058(14)28+1.6×30(14)4

=169.7ftkips>123.182ftkips (N.G.)

Conclusion:

MC18×58 is not adequate.

To determine

(b)

Whether a MC18×58 is adequate by usingASD

Expert Solution
Check Mark

Answer to Problem 5.5.14P

Inadequate

Explanation of Solution

Given:

Fy = 36 ksi

STEEL DESIGN W/ ACCESS, Chapter 5, Problem 5.5.14P , additional homework tip  3

Formula used:

Lp=1.76ryEFy

c=h02IyCw

Lr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp

Mn is nominal moment strength

Mpis plastic moment capacity

Calculation:

All channel shapes in the Manual are compact. (There are no footnotes to indicate otherwise)

For an MC18×58,

A=17.1in.2d=18in.tf=0.625in.rts=1.35in.h0=17.4in.Sx=75in.3Zx=95.4in.3Iy=17.6in.4ry=1.02in.J=2.81in.4Cw=1070in.6

A is Cross-sectional area

Sxis Elastic section modulus about X -axis

Zxis Plastic section modulus about X -axis

Iyis Moment of inertia about Y -axis

ryis Radius of gyration about Y -axis

Syis Elastic section modulus about Y -axis

rts is IyCwSx

Cwis Warping constant

h0is Distance between centroid of flanges

J is Torsional moment of inertia

Lp=1.76ryEFy=1.76(1.02)2900036=50.95in.=4.25ft

For channels,

c=h02IyCw=17.4217.61070=1.116Lr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2=1.95(1.35)290000.7(36)2.81×1.11675×17.4+(2.81×1.11675×17.4)2+6.76(0.7(36)29000)2=228.747in.=19.06ft.

For Lb=14ft, Lp<Lb<Lr so

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp (Inelastic Lateral torsional buckling)

From the below given figure in the textbook, Cb=1.32

STEEL DESIGN W/ ACCESS, Chapter 5, Problem 5.5.14P , additional homework tip  4

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp (Inelastic Lateral torsional buckling)

Mp=FyZx=36(95.4)=3434.4inkips=286.2ftkipsMn=1.32[3434.4(3434.40.7×36×75)(144.2519.064.25)]=1642.424inkips=136.87ftkips<MpMnΩb=136.871.67=81.96ftkipsMa=waL28+PaL4=0.058(14)28+30(14)4

=106.421ftkips>81.96ftkips

Conclusion:

MC18×58 is not adequate.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Vehicles begin to arrive at an amusement park entrance at 8:00 A.M. at a rate of 1000veh/h. Some of these vehicles have electronic identifiers that allow them to enter the park immediately, beginning at 8:00 A.M., without stopping (they are billed remotely). All vehicles without such identifiers stop at a single processing booth, but they wait in line until it opens at 8:10 A.M. Once open, the operator processes vehicles at μ(t) = 8 + 0.5t [where μ(t) is in vehicles per minute and t is in minutes after 8:10 A.M.]. An observer notes that at 8:25 there are exactly 20 vehicles in the queue. What percent of arriving vehicles have electronic identifiers and what is the total delay (from the 8:00 A.M. until the queue clears) for those vehicles without the electronic identifiers (assume D/D/1 queuing)?
1. For truss given in a figure below, determine reactions, and forces in all truss members. De- termine forces using two methods independently: (a) method of joints, and (b) method of sections. Compare your results and verify that your solutions are accurate. Assume that force F = 10kN. 2m 2m 2m ▼F ▼F 4m ▼F 4m
1) Determine if the existing sedimentation basins are sufficient to accommodate the projected future capacity. If not, design upgrades to the sedimentation basins. A) Current Capacity: 22.5 MGD B) Future Capacity: 34.5 MGD for 110,000 residents C) If not, design upgrades to the sedimentation basins. 2) Specify the design flow rate, the type of basin (circular vs. rectangular) 3) Specify the basin dimensions (length, width, water depth or diameter and water depth). 4) Specify the dimensions of the launders (if applicable) and the length of the weir.

Chapter 5 Solutions

STEEL DESIGN W/ ACCESS

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning