University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.42E
(a) In Example 5.18 (Section 5.3), what value of D is required to make υt = 42 m/s for the skydiver? (b) If the skydiver’s daughter, whose mass is 45 kg, is falling through the air and has the same D (0.25 kg/m) as her father, what is the daughter's terminal speed?
Expert Solution & Answer
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
schedule03:03
Students have asked these similar questions
A woman stands on a scale while riding in an elevator. When the elevator is at rest, the scale reads 60kg. What will be the reading of the scale in kg when the elevator accelerates. (a) upward at 1.2 m/s^2. (b) downward at 1.2 m/s^2. (c) At what acceleration of the elevator would the person appear to be weightless? Draw the FBD of the problem.
A 4.5-kg object is dropped vertically (with zero horizontal speed) from a tall
building with an initial velocity 6.6 m/s (positive is downwards). Due to
aerodynamic drag, the object's downward acceleration is given by a = g -(k/m)*v2
where g is acceleration due to gravity (use 9.81 m/s?) and k = 0.19 kg/m is a
coefficient related to aerodynamic drag. Determine the distance the object will fall
to reach 90% of its terminal velocity. Assume the building is tall enough so that the
object can reach that speed and that g is constant.
Hints:
• First, calculate the object's terminal velocity. This occurs when the acceleration
of the object is zero.
•Szdx = In|æ| + c and S
= In|f(x)| +c
%3D
J(2)
Give your answer in metres and round the final answer to two decimal places.
A 62.9-kg skydiver reaches a terminal speed of 57.0 m/s with her parachute undeployed. Suppose the drag force acting on her is proportional to the speed squared, or Fdrag = kv².
%3D
(a) What is the constant of proportionality k? (Assume the gravitational acceleration is 9.8 m/s2.)
(b) What was the magnitude of the acceleration when she was falling at half terminal speed?
m/s?
Need Help?
Read It
Chapter 5 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 5.1 - A traffic light of weight w hangs from two...Ch. 5.2 - Suppose you hold the glider in Example 5.12 so...Ch. 5.3 - Consider a box that is placed on different...Ch. 5.4 - Satellites are held in orbit by the force of our...Ch. 5 - A man sits in a seat that is hanging from a rope....Ch. 5 - In general, the normal force is not equal to the...Ch. 5 - A clothesline hangs between two poles. No matter...Ch. 5 - You drive a car up a steep hill at constant speed....Ch. 5 - For medical reasons, astronauts in outer space...Ch. 5 - To push a box up a ramp, which requires less...
Ch. 5 - A woman in an elevator lets go of her briefcase,...Ch. 5 - A block rests on an inclined plane with enough...Ch. 5 - A crate slides up an inclined ramp and then slides...Ch. 5 - A crate of books rests on a level floor. To move...Ch. 5 - In a world without friction, which of the...Ch. 5 - When you stand with bare feet in a wet bathtub,...Ch. 5 - You are pushing a large crate from the back of a...Ch. 5 - It is often said that friction always opposes...Ch. 5 - If there is a net force on a particle in uniform...Ch. 5 - A curve in a road has a bank angle calculated and...Ch. 5 - You swing a ball on the end of a lightweight...Ch. 5 - The centrifugal force is not included in the...Ch. 5 - A professor swings a rubber stopper in a...Ch. 5 - To keep the forces on the riders within allowable...Ch. 5 - A tennis ball drops from rest at the top of a tall...Ch. 5 - You throw a baseball straight upward with speed 0....Ch. 5 - You throw a baseball straight upward. If you do...Ch. 5 - You have two identical tennis balls and fill one...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - When a balled baseball moves with air drag, when...Ch. 5 - A ball is thrown from the edge of a high cliff....Ch. 5 - Two 25.0-N weights are suspended at opposite ends...Ch. 5 - In Fig. E5.2 each of the suspended blocks has...Ch. 5 - A 75.0-kg wrecking ball hangs from a uniform,...Ch. 5 - BIO Injuries to the Spinal Column. In the...Ch. 5 - A picture frame hung against a wall is suspended...Ch. 5 - A large wrecking ball is held in place by two...Ch. 5 - Find the tension in each cord in Fig. E5.7 if the...Ch. 5 - A 1130-kg car is held in place by a light cable on...Ch. 5 - A man pushes on a piano with mass 180 kg; it...Ch. 5 - In Fig. E5.10 the weight w is 60.0 N. (a) What is...Ch. 5 - BIO Stay Awake! An astronaut is inside a 2.25 106...Ch. 5 - A rocket of initial mass 125 kg (including all the...Ch. 5 - CP Genesis Crash. On September 8, 2004, the...Ch. 5 - Three sleds are being pulled horizontally on...Ch. 5 - Atwoods Machine. A 15.0-kg load of bricks hangs...Ch. 5 - CP An 8.00-Kg block of ice, released from rest at...Ch. 5 - A light rope is attached to a block with mass 4.00...Ch. 5 - CP Runway Design. A transport plane lakes off from...Ch. 5 - CP A 750.0-kg boulder is raised from a quarry 125...Ch. 5 - Apparent Weight. A 550-N physics student stands on...Ch. 5 - CP BIO Force During a Jump. When jumping straight...Ch. 5 - CP CALC A 2540-kg test rocket is launched...Ch. 5 - CP CALC A 2.00-kg box is moving to the right with...Ch. 5 - CP CALC A 5.00-kg crate is suspended from the end...Ch. 5 - BIO The Trendelenburg Position. After emergencies...Ch. 5 - In a laboratory experiment on friction, a 135-N...Ch. 5 - CP A stockroom worker pushes a box with mass 16.8...Ch. 5 - A box of bananas weighing 40.0 N rests on a...Ch. 5 - A 45.0-kg crate of tools rests on a horizontal...Ch. 5 - Some sliding rocks approach the base of a hill...Ch. 5 - A box with mass 10.0 kg moves on a ramp that is...Ch. 5 - A pickup truck is carrying a toolbox, but the rear...Ch. 5 - You are lowering two boxes, one on top of the...Ch. 5 - Consider the system shown in Fig. E5.34. Block A...Ch. 5 - CP Stopping Distance. (a) If the coefficient of...Ch. 5 - CP A 25.0-kg box of textbooks rests on a loading...Ch. 5 - Two crates connected by a rope lie on a horizontal...Ch. 5 - A box with mass m is dragged across a level floor...Ch. 5 - CP As shown in Fig. E5.34, block A (mass 2.25 kg)...Ch. 5 - You throw a baseball straight upward. The drag...Ch. 5 - A large crate with mass m rests on a horizontal...Ch. 5 - (a) In Example 5.18 (Section 5.3), what value of D...Ch. 5 - A stone with mass 0.80 kg is attached to one end...Ch. 5 - BIO Force on a Skaters Wrist. A 52-kg ice skater...Ch. 5 - A small remote-controlled car with mass 1.60 kg...Ch. 5 - 5.46A small car with mass 0.800 kg travels at...Ch. 5 - A small model car with mass m travels at constant...Ch. 5 - A flat (unbanked) curve on a highway has a radius...Ch. 5 - A 1125-kg car and a 2250-kg pickup truck approach...Ch. 5 - The Giant Swing at a county fair consists of a...Ch. 5 - In another version of the Giant Swing (see...Ch. 5 - A small button placed on a horizontal rotating...Ch. 5 - Rotating Space Stations. One problem for humans...Ch. 5 - The Cosmo Clock 21 Ferris wheel in Yokohama,...Ch. 5 - An airplane flies in a loop (a circular path in a...Ch. 5 - A 50.0-kg stunt pilot who has been diving her...Ch. 5 - Stay Dry! You tie a cord to a pail of water and...Ch. 5 - A bowling ball weighing 71.2 N (16.0 lb) is...Ch. 5 - BIO Effect on Blood of Walking. While a person is...Ch. 5 - An adventurous archaeologist crosses between two...Ch. 5 - Two ropes are connected to a steel cable that...Ch. 5 - In Fig. P5.62 a worker lifts a weight w by pulling...Ch. 5 - In a repair shop a truck engine that has mass 409...Ch. 5 - A horizontal wire holds a solid uniform ball of...Ch. 5 - A solid uniform 45.0-kg ball of diameter 32.0 cm...Ch. 5 - CP A box is sliding with a constant speed of 4.00...Ch. 5 - CP BIO Forces During Chin-ups. When you do a...Ch. 5 - CP CALC A 2.00-kg box is suspended from the end of...Ch. 5 - CALC A 3.00-kg box that is several hundred meters...Ch. 5 - CP A 5.00-kg box sits at rest at the bottom of a...Ch. 5 - Two boxes connected by a light horizontal rope are...Ch. 5 - A 6.00-kg box sits on a ramp that is inclined at...Ch. 5 - CP An 8.00-kg box sits on a ramp that is inclined...Ch. 5 - CP In Fig. P5.74, m1 = 20.0 kg and = 53.1. The...Ch. 5 - CP You place a book of mass 5.00 kg against a...Ch. 5 - Block A in Fig. P5.76 weighs 60.0 N. The...Ch. 5 - A block with mass m1 is placed on an inclined...Ch. 5 - BIO The Flying Leap of a Flea. High-speed motion...Ch. 5 - Block A in Fig. P5.79 weighs 1.20 N, and block B...Ch. 5 - CP Elevator Design. You are designing an elevator...Ch. 5 - CP CALC You are standing on a bathroom scale in an...Ch. 5 - A hammer is hanging by a light rope from the...Ch. 5 - A 40.0-kg packing case is initially at rest on the...Ch. 5 - If the coefficient of static friction between a...Ch. 5 - Two identical 15.0-kg balls, each 25.0 cm in...Ch. 5 - CP Traffic Court. You are called as an expert...Ch. 5 - Block A in Fig. P5.87 weighs 1.90 N, and block B...Ch. 5 - CP Losing Cargo. A 12.0-kg box rests on the level...Ch. 5 - Block A in Fig. P5.89 has mass 4.00 kg, and block...Ch. 5 - Two blocks connected by a cord passing over a...Ch. 5 - In terms of m1, m2, and g, find the acceleration...Ch. 5 - Block B, with mass 5.00 kg, rests on block A, with...Ch. 5 - Two objects, with masses 5.00 kg and 2.00 kg, hang...Ch. 5 - Friction in an Elevator. You are riding in an...Ch. 5 - A block is placed against the vertical front of a...Ch. 5 - Two blocks, with masses 4.00 kg and 8.00 kg, are...Ch. 5 - Block A, with weight 3w, slides down an inclined...Ch. 5 - Jack sits in the chair of a Ferris wheel that is...Ch. 5 - Bunked Curve I. A curve with a 120-m radius on a...Ch. 5 - Banked Curve II. Consider a wet roadway banked as...Ch. 5 - Blocks A, B, and C are placed as in Fig. P5.101...Ch. 5 - You are riding in a school bus. As the bus rounds...Ch. 5 - CALC You throw a rock downward into water with a...Ch. 5 - A 4.00-kg block is attached to a vertical rod by...Ch. 5 - On the ride Spindletop at the amusement park Six...Ch. 5 - A 70-kg person rides in a 30-kg cart moving at 12...Ch. 5 - A small bead can slide without friction on a...Ch. 5 - A physics major is working to pay her college...Ch. 5 - DATA In your physics lab, a block of mass m is at...Ch. 5 - DATA A road heading due cast passes over a small...Ch. 5 - DATA You are an engineer working for a...Ch. 5 - Moving Wedge. A wedge with mass M rests on a...Ch. 5 - Figure P5.112 5.113A wedge with mass M rests on a...Ch. 5 - Double Atwoods Machine. In Fig. P5.114 masses m1...Ch. 5 - A ball is held at rest at position A in Fig....Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Whats the flux through the hemispherical open surface of radius R in a uniform field of magnitude E shown in Fi...
Essential University Physics: Volume 2 (3rd Edition)
A bat crashes into the vertical front of an accelerating subway train. If the frictional coefficient between ba...
Essential University Physics (3rd Edition)
The bulbs in parallel circuits A, B, and C are identical. An ammeter is placed in different locations, as shown...
Conceptual Integrated Science
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
The rank of the forces F1 , F2 , F3 and F4 in increasing order.
Physics (5th Edition)
(III) A wheel with rotational inertia about its central axle is set spinning with initial angular speed ω0, an...
Physics for Scientists and Engineers with Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Let us make the (unrealistic) assumption that a boat of mass m gliding with initial velocity v0 in water is slowed by a viscous retarding force of magnitude bv2, where b is a constant, (a) Find and sketch v(t). How long does it take the boat to reach a speed of v0/l000? (b) Find x(t). How far does the boat travel in this time? Let m = 200 kg, v0 = 2 m/s, and b = 0.2 Nm-2s2.arrow_forwardTwo blocks, each of mass m = 3.50 kg, are hung from the ceiling of an elevator as in Figure P4.33. (a) If the elevator moves with an upward acceleration a of magnitude 1.60 m/s2, find the tensions T1 and T2 in the upper and lower strings. (b) If the strings can withstand a maximum tension of 85.0 N, what maximum acceleration can the elevator have before a string breaks? Figure P4.33 Problems 33 and 34.arrow_forwardThe United States possesses the ten largest warships in the world, aircraft carriers of the Nimitz class. Suppose one of the ships bobs up to float 11.0 cm higher in the ocean water when 50 fighters take off from it in a time interval of 25 min, at a location where the free-fall acceleration is 9.78 m/s2. The planes have an average laden mass of 29 000 kg. Find the horizontal area enclosed by the waterline of the ship.arrow_forward
- You carry a pendulum and a protractor with you onto a train. As the train starts moving, the pendulum string swings back to an angle of Ɵ degree with respect to vertical and remains at that angle. If the acceleration of the train at that moment is 1.4 m/s 2 , (a) find the angle Ɵ. (b) find the tension in the string if the mass of the pendulum is 200 grams. (c) If the train is moving forward at a constant velocity of magnitude 18 m/s. At what angle will the pendulum bob string hang?arrow_forward(b) From what height (in m) would the sphere have to be dropped to reach this speed if it fell without air resistance?arrow_forwardA spherical raindrop 3.5 mm in diameter falls through a vertical distance of 3700 m. Take the cross-sectional area of a raindrop = ?r2, drag coefficient = 0.45, density of water to be 1000 kg/m3, and density of air to be 1.2 kg/m3. (a) Calculate the speed a spherical raindrop would achieve falling from 3700 m in the absence of air drag. (m/s)(b) What would its speed be at the end of 3700 m when there is air drag? (Note that the raindrop will reach terminal velocity after falling about 30 m.)arrow_forward
- The distance between two telephone poles is d = 52.0 m. When a 0.850-kg bird lands on the telephone wire midway between the poles, the wire sags h = 0.205 m. (a) Draw a free-body diagram of the bird. (b) How much tension does the bird produce in the wire? Ignore the weight of the wire.arrow_forward60 kg jumps out of an airplane. At some moment before the A skydiver of mass m = parachute opens, while falling in a spread-eagle formation, her instantaneous velocity is = (0,-20, 0) m/s. (The coordinate system is one for which skyward is the +y direction.) What is the acceleration (a vector) of the skydiver at that moment? Include air drag in your calculation. Put your numerical vector answer in component form. Constants: In this formation her drag coefficient is C = 1.0. Her area that "catches" the air is A= 1.5 m2. The density of air is p= 1.22 kg/m³.] %3D %3Darrow_forwardYou find it takes 190 N of horizontal force to move an unloaded pickup truck along a level road at a speed of 2.4 m/s . You then load up the pickup and pump up its tires so that its total weight increases by 42%while the coefficient of rolling friction decreases by 19%. Now what horizontal force will you need to move the pickup along the same road at the same speed? The speed is low enough that you can ignore air resistance..arrow_forward
- An elevator in a tall building is allowed to have a maximum speed of 3.74 m/s going down. If the mass of the elevator (and the passengers) is 1390 kg, What must the tension be in the massless elevator cable in order to stop the elevator over a distance of 1.79m?arrow_forwardA 52.4-kg skydiver reaches a terminal speed of 63.3 m/s with her parachute undeployed. Suppose the drag force acting on her is proportional to the speed squared, or Fdrag = kv2. (a) What is the constant of proportionality k? (Assume the gravitational acceleration is 9.8 m/s2.)(b) What was the magnitude of the acceleration when she was falling at half terminal speed? m/s2arrow_forwardA stacked pair of books with masses m1= 1.5 kg (bottom book) and m2 = 1.0 kg (top book) are tossed onto a table. The books strike the table with no vertical velocity and their common horizontal speed is vo = 0.75 m/s.The kinetic friction coefficient between the bottom book and the table is Muek1=0.45; the kinetic and staticfriction coefficients between the two books are Muek2=0.3 and Mues2= 0.4. Find the final horizontalposition of each book relative to the spot where the stack hits the table.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY