FRICTION AND CLIMBING SHOES. Shoes made for the sports of bouldering and rock climbing are designed to provide a great deal of friction between the foot and the surface of the ground. Such shoes on smooth rock might have a coefficient of static friction of 1.2 and a coefficient of kinetic friction of 0.90. 5.116 For a person wearing these shoes, what’s the maximum angle (with respect to the horizontal) of a smooth rock that can be walked on without slipping? (a) 42°; (b) 50°; (c) 64°; (d) larger than 90°. 5.117 If the person steps onto a smooth rock surface that’s inclined at an angle large enough that these shoes begin to slip, what will happen? (a) She will slide a short distance and stop; (b) she will accelerate down the surface; (c) she will slide down the surface at constant speed; (d) we can’t tell what will happen without knowing her mass. 5.118 A person wearing these shoes stands on a smooth, horizontal rock. She pushes against the ground to begin running. What is the maximum horizontal acceleration she can have without slipping? (a) 0.20g; (b) 0.75g; (c) 0.90g; (d) 1.2g.
FRICTION AND CLIMBING SHOES. Shoes made for the sports of bouldering and rock climbing are designed to provide a great deal of friction between the foot and the surface of the ground. Such shoes on smooth rock might have a coefficient of static friction of 1.2 and a coefficient of kinetic friction of 0.90. 5.116 For a person wearing these shoes, what’s the maximum angle (with respect to the horizontal) of a smooth rock that can be walked on without slipping? (a) 42°; (b) 50°; (c) 64°; (d) larger than 90°. 5.117 If the person steps onto a smooth rock surface that’s inclined at an angle large enough that these shoes begin to slip, what will happen? (a) She will slide a short distance and stop; (b) she will accelerate down the surface; (c) she will slide down the surface at constant speed; (d) we can’t tell what will happen without knowing her mass. 5.118 A person wearing these shoes stands on a smooth, horizontal rock. She pushes against the ground to begin running. What is the maximum horizontal acceleration she can have without slipping? (a) 0.20g; (b) 0.75g; (c) 0.90g; (d) 1.2g.
FRICTION AND CLIMBING SHOES. Shoes made for the sports of bouldering and rock climbing are designed to provide a great deal of friction between the foot and the surface of the ground. Such shoes on smooth rock might have a coefficient of static friction of 1.2 and a coefficient of kinetic friction of 0.90.
5.116 For a person wearing these shoes, what’s the maximum angle (with respect to the horizontal) of a smooth rock that can be walked on without slipping? (a) 42°; (b) 50°; (c) 64°; (d) larger than 90°.
5.117 If the person steps onto a smooth rock surface that’s inclined at an angle large enough that these shoes begin to slip, what will happen? (a) She will slide a short distance and stop; (b) she will accelerate down the surface; (c) she will slide down the surface at constant speed; (d) we can’t tell what will happen without knowing her mass.
5.118 A person wearing these shoes stands on a smooth, horizontal rock. She pushes against the ground to begin running. What is the maximum horizontal acceleration she can have without slipping? (a) 0.20g; (b) 0.75g; (c) 0.90g; (d) 1.2g.
A Smart Fortwo® car has a mass of 730 kg, which we assume on a flat surface is evenly
distributed over its four tires. What is the maximum value of static friction on one tire if
the coefficient of static friction between the tire and the road is 0.85? Note: In Iceland,
though Smart cars are popular, there are special warnings about where to park them
because the local winds can be strong enough to move the cars if they are not sheltered.
The 121-lb force P is applied to the 250-lb crate, which is stationary before the force is applied. Determine the magnitude and
direction of the friction force F exerted by the horizontal surface on the crate. The friction force is positive if to the right, negative if to
the left.
Assume μ = 0.45, μk = 0.36.
Answer: F= i
lb
You are pushing a metal crate against a metal floor. The two surfaces have a static coefficient of friction of 0.62 and a kinetic coefficient of friction of 0.50. The floor is horizontal, and the crate has a mass of 25.0 kg. What is the minimum force you need to apply to get the crate moving from rest? Give your answer in units of N, to three significant figures.
Chapter 5 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.