University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.11DQ
In a world without friction, which of the following activities could you do (or not do)? Explain your reasoning. (a) Drive around an unbanked highway curve; (b) jump into the air; (c) start walking on a horizontal sidewalk; (d) climb a vertical ladder; (e) change lanes while you drive.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A block is sent up an incline with a velocity of 3.51 m/s. Assume there is no friction between the incline and the block. The angle is at an incline of 31.1 degrees with the horizontal. A) How far up the incline does the block go? B) How long does it take to get there? C) What is it's speed when it gets back to the bottom?
Can someone help me understand this practice question? How do I approach solving it, step by step, please!
A 38.0-kg child swings in a swing supported by two chains, each 3.08 m long. The tension in each chain at the lowest point is 420 N.
(a) Find the child's speed at the lowest point.
m/s
(b) Find the force exerted by the seat on the child at the lowest point. (Ignore the mass of the seat.)
N (upward)
Need Help?
Read
Master
Chapter 5 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 5.1 - A traffic light of weight w hangs from two...Ch. 5.2 - Suppose you hold the glider in Example 5.12 so...Ch. 5.3 - Consider a box that is placed on different...Ch. 5.4 - Satellites are held in orbit by the force of our...Ch. 5 - A man sits in a seat that is hanging from a rope....Ch. 5 - In general, the normal force is not equal to the...Ch. 5 - A clothesline hangs between two poles. No matter...Ch. 5 - You drive a car up a steep hill at constant speed....Ch. 5 - For medical reasons, astronauts in outer space...Ch. 5 - To push a box up a ramp, which requires less...
Ch. 5 - A woman in an elevator lets go of her briefcase,...Ch. 5 - A block rests on an inclined plane with enough...Ch. 5 - A crate slides up an inclined ramp and then slides...Ch. 5 - A crate of books rests on a level floor. To move...Ch. 5 - In a world without friction, which of the...Ch. 5 - When you stand with bare feet in a wet bathtub,...Ch. 5 - You are pushing a large crate from the back of a...Ch. 5 - It is often said that friction always opposes...Ch. 5 - If there is a net force on a particle in uniform...Ch. 5 - A curve in a road has a bank angle calculated and...Ch. 5 - You swing a ball on the end of a lightweight...Ch. 5 - The centrifugal force is not included in the...Ch. 5 - A professor swings a rubber stopper in a...Ch. 5 - To keep the forces on the riders within allowable...Ch. 5 - A tennis ball drops from rest at the top of a tall...Ch. 5 - You throw a baseball straight upward with speed 0....Ch. 5 - You throw a baseball straight upward. If you do...Ch. 5 - You have two identical tennis balls and fill one...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - A ball is dropped from rest and feels air...Ch. 5 - When a balled baseball moves with air drag, when...Ch. 5 - A ball is thrown from the edge of a high cliff....Ch. 5 - Two 25.0-N weights are suspended at opposite ends...Ch. 5 - In Fig. E5.2 each of the suspended blocks has...Ch. 5 - A 75.0-kg wrecking ball hangs from a uniform,...Ch. 5 - BIO Injuries to the Spinal Column. In the...Ch. 5 - A picture frame hung against a wall is suspended...Ch. 5 - A large wrecking ball is held in place by two...Ch. 5 - Find the tension in each cord in Fig. E5.7 if the...Ch. 5 - A 1130-kg car is held in place by a light cable on...Ch. 5 - A man pushes on a piano with mass 180 kg; it...Ch. 5 - In Fig. E5.10 the weight w is 60.0 N. (a) What is...Ch. 5 - BIO Stay Awake! An astronaut is inside a 2.25 106...Ch. 5 - A rocket of initial mass 125 kg (including all the...Ch. 5 - CP Genesis Crash. On September 8, 2004, the...Ch. 5 - Three sleds are being pulled horizontally on...Ch. 5 - Atwoods Machine. A 15.0-kg load of bricks hangs...Ch. 5 - CP An 8.00-Kg block of ice, released from rest at...Ch. 5 - A light rope is attached to a block with mass 4.00...Ch. 5 - CP Runway Design. A transport plane lakes off from...Ch. 5 - CP A 750.0-kg boulder is raised from a quarry 125...Ch. 5 - Apparent Weight. A 550-N physics student stands on...Ch. 5 - CP BIO Force During a Jump. When jumping straight...Ch. 5 - CP CALC A 2540-kg test rocket is launched...Ch. 5 - CP CALC A 2.00-kg box is moving to the right with...Ch. 5 - CP CALC A 5.00-kg crate is suspended from the end...Ch. 5 - BIO The Trendelenburg Position. After emergencies...Ch. 5 - In a laboratory experiment on friction, a 135-N...Ch. 5 - CP A stockroom worker pushes a box with mass 16.8...Ch. 5 - A box of bananas weighing 40.0 N rests on a...Ch. 5 - A 45.0-kg crate of tools rests on a horizontal...Ch. 5 - Some sliding rocks approach the base of a hill...Ch. 5 - A box with mass 10.0 kg moves on a ramp that is...Ch. 5 - A pickup truck is carrying a toolbox, but the rear...Ch. 5 - You are lowering two boxes, one on top of the...Ch. 5 - Consider the system shown in Fig. E5.34. Block A...Ch. 5 - CP Stopping Distance. (a) If the coefficient of...Ch. 5 - CP A 25.0-kg box of textbooks rests on a loading...Ch. 5 - Two crates connected by a rope lie on a horizontal...Ch. 5 - A box with mass m is dragged across a level floor...Ch. 5 - CP As shown in Fig. E5.34, block A (mass 2.25 kg)...Ch. 5 - You throw a baseball straight upward. The drag...Ch. 5 - A large crate with mass m rests on a horizontal...Ch. 5 - (a) In Example 5.18 (Section 5.3), what value of D...Ch. 5 - A stone with mass 0.80 kg is attached to one end...Ch. 5 - BIO Force on a Skaters Wrist. A 52-kg ice skater...Ch. 5 - A small remote-controlled car with mass 1.60 kg...Ch. 5 - 5.46A small car with mass 0.800 kg travels at...Ch. 5 - A small model car with mass m travels at constant...Ch. 5 - A flat (unbanked) curve on a highway has a radius...Ch. 5 - A 1125-kg car and a 2250-kg pickup truck approach...Ch. 5 - The Giant Swing at a county fair consists of a...Ch. 5 - In another version of the Giant Swing (see...Ch. 5 - A small button placed on a horizontal rotating...Ch. 5 - Rotating Space Stations. One problem for humans...Ch. 5 - The Cosmo Clock 21 Ferris wheel in Yokohama,...Ch. 5 - An airplane flies in a loop (a circular path in a...Ch. 5 - A 50.0-kg stunt pilot who has been diving her...Ch. 5 - Stay Dry! You tie a cord to a pail of water and...Ch. 5 - A bowling ball weighing 71.2 N (16.0 lb) is...Ch. 5 - BIO Effect on Blood of Walking. While a person is...Ch. 5 - An adventurous archaeologist crosses between two...Ch. 5 - Two ropes are connected to a steel cable that...Ch. 5 - In Fig. P5.62 a worker lifts a weight w by pulling...Ch. 5 - In a repair shop a truck engine that has mass 409...Ch. 5 - A horizontal wire holds a solid uniform ball of...Ch. 5 - A solid uniform 45.0-kg ball of diameter 32.0 cm...Ch. 5 - CP A box is sliding with a constant speed of 4.00...Ch. 5 - CP BIO Forces During Chin-ups. When you do a...Ch. 5 - CP CALC A 2.00-kg box is suspended from the end of...Ch. 5 - CALC A 3.00-kg box that is several hundred meters...Ch. 5 - CP A 5.00-kg box sits at rest at the bottom of a...Ch. 5 - Two boxes connected by a light horizontal rope are...Ch. 5 - A 6.00-kg box sits on a ramp that is inclined at...Ch. 5 - CP An 8.00-kg box sits on a ramp that is inclined...Ch. 5 - CP In Fig. P5.74, m1 = 20.0 kg and = 53.1. The...Ch. 5 - CP You place a book of mass 5.00 kg against a...Ch. 5 - Block A in Fig. P5.76 weighs 60.0 N. The...Ch. 5 - A block with mass m1 is placed on an inclined...Ch. 5 - BIO The Flying Leap of a Flea. High-speed motion...Ch. 5 - Block A in Fig. P5.79 weighs 1.20 N, and block B...Ch. 5 - CP Elevator Design. You are designing an elevator...Ch. 5 - CP CALC You are standing on a bathroom scale in an...Ch. 5 - A hammer is hanging by a light rope from the...Ch. 5 - A 40.0-kg packing case is initially at rest on the...Ch. 5 - If the coefficient of static friction between a...Ch. 5 - Two identical 15.0-kg balls, each 25.0 cm in...Ch. 5 - CP Traffic Court. You are called as an expert...Ch. 5 - Block A in Fig. P5.87 weighs 1.90 N, and block B...Ch. 5 - CP Losing Cargo. A 12.0-kg box rests on the level...Ch. 5 - Block A in Fig. P5.89 has mass 4.00 kg, and block...Ch. 5 - Two blocks connected by a cord passing over a...Ch. 5 - In terms of m1, m2, and g, find the acceleration...Ch. 5 - Block B, with mass 5.00 kg, rests on block A, with...Ch. 5 - Two objects, with masses 5.00 kg and 2.00 kg, hang...Ch. 5 - Friction in an Elevator. You are riding in an...Ch. 5 - A block is placed against the vertical front of a...Ch. 5 - Two blocks, with masses 4.00 kg and 8.00 kg, are...Ch. 5 - Block A, with weight 3w, slides down an inclined...Ch. 5 - Jack sits in the chair of a Ferris wheel that is...Ch. 5 - Bunked Curve I. A curve with a 120-m radius on a...Ch. 5 - Banked Curve II. Consider a wet roadway banked as...Ch. 5 - Blocks A, B, and C are placed as in Fig. P5.101...Ch. 5 - You are riding in a school bus. As the bus rounds...Ch. 5 - CALC You throw a rock downward into water with a...Ch. 5 - A 4.00-kg block is attached to a vertical rod by...Ch. 5 - On the ride Spindletop at the amusement park Six...Ch. 5 - A 70-kg person rides in a 30-kg cart moving at 12...Ch. 5 - A small bead can slide without friction on a...Ch. 5 - A physics major is working to pay her college...Ch. 5 - DATA In your physics lab, a block of mass m is at...Ch. 5 - DATA A road heading due cast passes over a small...Ch. 5 - DATA You are an engineer working for a...Ch. 5 - Moving Wedge. A wedge with mass M rests on a...Ch. 5 - Figure P5.112 5.113A wedge with mass M rests on a...Ch. 5 - Double Atwoods Machine. In Fig. P5.114 masses m1...Ch. 5 - A ball is held at rest at position A in Fig....Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...Ch. 5 - FRICTION AND CLIMBING SHOES. Shoes made for the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
New Planet Orbit. A newly discovered planet orbits a distant star with the same mass as the Sun at an average d...
Life in the Universe (4th Edition)
Lasers 1 and 2 emit light of the same color, and the electric field in the beam from laser 1 is twice as strong...
Essential University Physics: Volume 2 (3rd Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
The energy stored in such a cell membrane.
Physics (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hockey puck slides with constant velocity, from point “a” to point “b” along a frictionless horizontal surface. When the puck reaches point “b”, it receives a instantaneous horizontal “kick “ in the direction as depicted by the heavy arrow.a. (a)b. (b)c. (c)d. (d)3. (e)arrow_forwardThanks!arrow_forward4 decimal places pleasearrow_forward
- If the motor exerts a constant force of 300 N on the cable, determine the speed (ft/s) of the 20-kg crate when it travels s = 10 m up the plane, starting from rest. The coefficient of kinetic friction between the crate and the plane is u = 0.3arrow_forwardAn amusement park in Dubai has a ramp which is frictionless. A child drops a smooth object and it slides down the ramp and comes down through a height 3.7 m. What distance is necessary to stop the object on the flat track if the coefficient of friction is 0.2? Answer:arrow_forwardIn a circus performance, a monkey is strapped to a sled and both are given an initial speed of 5.0 m/s up a 21.0° inclined track. The combined mass of monkey and sled is 18 kg, and the coefficient of kinetic friction between sled and incline is 0.20. How far up the incline do the monkey and sled move? marrow_forward
- The diagram shows a box moving down a green ramp, beginning from rest at the top of the ramp and ending at the bottom. The angle of the ramp's surface with the horizontal and the distance the box moves on the ramp from top to bottom are shown in the diagram. Given this information, how long does it take the box to reach the bottom of the ramp? Assume the surface of the ramp is frictionless and ignore air resistance. Use g = 9.81 m/s². Give your answer in units of seconds to two significant figures. When inputting your answer in the box below, enter a numerical value only (without the unit's symbol or name). Ax = 12 m 0 = 30° x □arrow_forwardThe diagram shows a box moving down a green ramp, beginning from rest at the top of the ramp and ending at the bottom. The angle of the ramp's surface with the horizontal and the distance the box moves on the ramp from top to bottom are shown in the diagram. Given this information, how long does it take the box to reach the bottom of the ramp? Assume the surface of the ramp is frictionless and ignore air resistance. Use g = 9.81 m/s². Give your answer in units of seconds to two significant figures. When inputting your answer in the box below, enter a numerical value only (without the unit's symbol or name). Ax = 36 m 8 = 30°arrow_forwardAfter collecting so much Halloween candy, you want to find a secret place to eat it all without being bothered. You see a small hiding place on top of a neighbors shed. Luckily, the neighbor has a ramp that leads up to the roof of the shed. You pull your bag of candy with a mass of 6.2 kg up the frictionless ramp which is at an angle of 29 degrees above the horizontal. The bag has an acceleration of 1.81 m/s2 parallel to, and UP the ramp while you are pulling -What is the Normal Force exerted on bag of candy by the ramp? - What force do you need to pull with in order to give the bag an acceleration of 1.81 m/s2?arrow_forward
- In a circus performance, a monkey is strapped to a sled and both are given an initial speed of 3.0 m/s up a 24.0° inclined track. The combined mass of monkey and sled is 16 kg, and the coefficient of kinetic friction between sled and incline is 0.20. How far up the incline do the monkey and sled move?m?arrow_forwardOne great form of athletic competition for bulldogs, American pit bull terriers, huskies, and many other breeds is the weight pull. Many of these dogs can pull weights two orders of magnitude greater than their own weight! Railsplitter, an American pit bull terrier, can pull a sled that has a total weight of 2215 lb along a horizontal surface. Suppose he pulls with a horizontal force of 3.50 103 N while friction is also working against the sled. If the magnitude of the net acceleration of the sled is 0.152 m/s2, find the value of the coefficient of kinetic friction, k, between the sled and the pulling surface. (The sled is normally on a set of rails.)arrow_forwardA roller coaster at the Six Flags Great America amusement park in Gurnee, Illinois, incorporates some clever design technology and some basic physics. Each vertical loop, instead of being circular, is shaped like a teardrop (Fig. P5.22). The cars ride on the inside of the loop at the top, and the speeds are fast enough to ensure the cars remain on the track. The biggest loop is 40.0 in high. Suppose the speed at the top of the loop is 13.0 m/s and the corresponding centripetal acceleration of the riders is 2g. (a) What is the radius of the arc of the teardrop at the top? (b) If the total mass of a car plus the riders is M, what force does the rail exert on the car at the top? (c) Suppose the roller coaster had a circular loop of radius 20.0 m. If the care have the same speed, 13.0 m/s at the top, what is the centripetal acceleration of the riders at the top? (d) Comment on the normal force at the top in the situation described in part (c) and on the advantages of having teardrop-shaped loops.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY