Concept explainers
Reactions represented by the following equations take place in water solutions. Write each molecular equation in total ionic form, then identify spectator ions and write the equations in net ionic form. Solids that do not dissolve are designated by (s), gases that do not dissolve are designated by (g), and substances that dissolve but do not dissociate appear in blue.
a.
b.
c.
d.
e.
f.
(a)
Interpretation:
The given equation is to be written in total ionic form. The spectator ionsare to be identified. The net ionic equation is to be stated.
Concept introduction:
Ionic compounds are those compounds that have the strong electrostatic force of attraction between the oppositely charged ions. The ionic compound conducts electricity in the molten state or in solution. The ionic compounds are soluble in water and dissociates into their respective ions.
Answer to Problem 5.31E
The total ionic form of given reaction is
Explanation of Solution
The given reaction is shown below.
The total ionic form of given reaction can be written as shown below.
The spectator ions are those ions whose identity does not change after the reaction. Thus, the spectator ions are
The net ionic equation can be expressed by removing the spectator ions. Hence, the net ionic equation is shown below.
The total ionic form of given reaction is
The spectator ions are
The net ionic equation is
(b)
Interpretation:
The given equation is to be written in total ionic form. The spectator ions are to be identified. The net ionic equation is to be stated.
Concept introduction:
Ionic compounds are those compounds that have the strong electrostatic force of attraction between the oppositely charged ions. The ionic compound conducts electricity in the molten state or in solution. The ionic compounds are soluble in water and dissociates into their respective ions.
Answer to Problem 5.31E
The total ionic form of given reaction is
Explanation of Solution
The given reaction is shown below.
The total ionic form of given reaction can be written as shown below.
The spectator ions are those ions whose identity does not change after the reaction. Thus, the spectator ion is
The net ionic equation can be expressed by removing the spectator ions. Hence, the net ionic equation is shown below.
The total ionic form of given reaction is
(c)
Interpretation:
The given equation is to be written in total ionic form. The spectator ions are to be identified. The net ionic equation is to be stated.
Concept introduction:
Ionic compounds are those compounds that have the strong electrostatic force of attraction between the oppositely charged ions. The ionic compound conducts electricity in the molten state or in solution. The ionic compounds are soluble in water and dissociates into their respective ions.
Answer to Problem 5.31E
The total ionic form of given reaction is
The spectator ion is
Explanation of Solution
The given reaction is shown below.
The total ionic form of given reaction can be written as shown below.
The spectator ions are those ions whose identity does not change after the reaction. Thus, the spectator ion is
The net ionic equation can be expressed by removing the spectator ions. Hence, the net ionic equation is shown below.
The total ionic form of given reaction is
(d)
Interpretation:
The given equation is to be written in total ionic form. The spectator ions are to be identified. The net ionic equation is to be stated.
Concept introduction:
Ionic compounds are those compounds that have the strong electrostatic force of attraction between the oppositely charged ions. The ionic compound conducts electricity in the molten state or in solution. The ionic compounds are soluble in water and dissociates into their respective ions.
Answer to Problem 5.31E
The total ionic form of given reaction is
Explanation of Solution
The given reaction is shown below.
The total ionic form of given reaction can be written as shown below.
The spectator ions are those ions whose identity does not change after the reaction. Thus, the spectator ion is
The net ionic equation can be expressed by removing the spectator ions. Hence, the net ionic equation is shown below.
The total ionic form of given reaction is
(e)
Interpretation:
The given equation is to be written in total ionic form. The spectator ions are to be identified. The net ionic equation is to be stated.
Concept introduction:
Ionic compounds are those compounds that have the strong electrostatic force of attraction between the oppositely charged ions. The ionic compound conducts electricity in the molten state or in solution. The ionic compounds are soluble in water and dissociates into their respective ions.
Answer to Problem 5.31E
The total ionic form of given reaction is
Explanation of Solution
The given reaction is shown below.
The total ionic form of given reaction can be written as shown below.
The spectator ions are those ions whose identity does not change after the reaction. Thus, the spectator ion is
The net ionic equation can be expressed by removing the spectator ions. Hence, the net ionic equation is shown below.
The total ionic form of given reaction is
(f)
Interpretation:
The given equation is to be written in total ionic form. The spectator ions are to be identified. The net ionic equation is to be stated.
Concept introduction:
Ionic compounds are those compounds that have the strong electrostatic force of attraction between the oppositely charged ions. The ionic compound conducts electricity in the molten state or in solution. The ionic compounds are soluble in water and dissociates into their respective ions.
Answer to Problem 5.31E
The total ionic form of given reaction is
Explanation of Solution
The given reaction is shown below.
The total ionic form of given reaction can be written as shown below.
The spectator ions are those ions whose identity does not change after the reaction. Thus, the spectator ion is
The net ionic equation can be expressed by removing the spectator ions. Hence, the net ionic equation is shown below.
The total ionic form of given reaction is
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry For Today: General, Organic, And Biochemistry, Loose-leaf Version
Additional Science Textbook Solutions
Campbell Essential Biology with Physiology (5th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
General, Organic, and Biological Chemistry - 4th edition
Fundamentals Of Thermodynamics
Human Anatomy & Physiology (2nd Edition)
- . 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Q2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward
- 10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forward
- Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forwardIn three dimensions, explain the concept of the velocity distribution function of particles within the kinetic theory of gases.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles in space.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning