(a) The nitrogen atom has one electron in each of the
(b) The same result as in part (a) applies to d orbitals, thus a filled or half-filled subshell of d orbitals is spherically symmetric. Identify the spherically symmetric atoms or ions among the following:
Trending nowThis is a popular solution!
Chapter 5 Solutions
Principles of Modern Chemistry
- A nonmetallic element, R, burns brightly in air to give the oxide R4O10. If R is in Period 3, what is the ground-state valence-shell configuration of the atom?arrow_forward• identify an orbital (as 1s, 3p, etc.) from its quantum numbers, or vice versa.arrow_forwardConsider burning ethane gas, C2H6 in oxygen (combustion) forming CO2 and water. (a) How much energy (in J) is produced in the combustion of one molecule of ethane? (b) What is the energy of a photon of ultraviolet light with a wavelength of 12.6 nm? (c) Compare your answers for (a) and (b).arrow_forward
- In the ground state of element 115, Uup, a. how many electrons have n = 5 as one of their quantum numbers? b. how many electrons have l = 3 as one of their quantum numbers? c. how many electrons have ml = 1 as one of their quantum numbers? d. how many electrons have ms = 12 as one of their quantum numbers?arrow_forwardSpectroscopists have observed He+ in outer space. This ion is a one-electron species like a neutral hydrogen atom. Calculate the energy of the photon emitted for the transition from the n = 5 to the n = 3 state in this ion using the equation: En = − Z2/n2 (2.179 × 10−18 J). Z is the positive charge of the nucleus and n is the principal quantum number. In what part of the electromagnetic spectrum does this radiation lie?arrow_forwardWhat is the electron configuration of the Ba3+ ion? Suggest a reason why this ion is not normally found in nature.arrow_forward
- (a) How does the Bohr model differ from the quantum mechanical model of the atom? Describe at least 2 differences.(b) Define each of the 4 quantum numbers (n, l, ml, ms) and what they physically represent about the orbital and/or electron.(d) How many quantum numbers are needed to completely define a specific orbital? Provide the quantum numbers for the 2s orbital.(d) How many quantum numbers are needed to completely define a specific electron? Provide the quantum numbers for the second electron to fill into a 2s orbital.arrow_forwardIn a given atom, what are the maximum number of electrons that are allowed to have the following sets of quantum number? If you could explain at least 2-3 to me (no matter the order, I would really appreciate it.arrow_forward(a) The nitrogen atom has one electron in each of the 2px,2py and 2pz orbitals. By using the form of the angularwave functions, show that the total electron density,c2(2px) +c2(2py) +c2(2pz), is spherically symmetric(that is, it is independent of the angles u and f). Theneon atom, which has two electrons in each 2porbital, is also spherically symmetric.(b) The same result as in part (a) applies to d orbitals,thus a filled or half-filled subshell of d orbitals isspherically symmetric. Identify the spherically symmetric atoms or ions among the following: F=, Na, Si,S2-, Ar+, Ni, Cu, Mo, Rh, Sb, W, Au.arrow_forward
- The first ionization energy of helium is 2370 kJ mol¯1, the highest for any element. (a) Define ionization energy and discuss why for helium it should be so high. (b) Which element would you expect to have the highest second ionization energy? Why? (c) Suppose thar you wished to ionize some helium by shining clectromagnetic radiation on it. What is the maximum wavelength you could use?arrow_forward10. Consider two hydrogen atoms. The electron in the first one is in n=1 state, whereas in the second the electron is in the n=3 state. (a) which atom is in the ground state configuration? Why? (b) Which orbital has a larger radius? (c) Which electron is moving faster and why? (d) Which electron has a lower potential energy? (e) Which atom has higher ionization energy? Hint: assume that the radius of the n=3 orbital is =5 rBarrow_forwardA hydrogen atom consists of a proton and an electron. According to the Bohr theory, the electron revolves about the proton in a circle of radius a (a = 5 · 10−9cm for the ground state). According to quantum mechanics, the electron may be at any distance r (from 0 to ∞) from the proton; for the ground state, the probability that the electron is in a volume element dV , at a distance r to r + dr from the proton, is proportional to e−2r/adV , where a is the Bohr radius. Write dV in spherical coordinates (see Chapter 5, Section 4) and find the density function f(r) so that f(r) dr is the probability that the electron is at a distance between r and r + drfrom the proton. (Remember that the probability for the electron to be somewhere must be 1.) Computer plot f(r) and show that its maximum value is at r = a; we then say that the most probable value of r is a. Also show that the average value of r−1 is a−1.arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning