Concept explainers
Problems 42 through 52 describe a situation. For each, draw a motion diagram, a force-identification diagram, and a free-body diagram.
42. An elevator, suspended by a single cable, has just left the tenth floor and is speeding up as it descends towards the ground floor.
43. A rocket is being launched straight up. Air resistance is not negligible.
44. A Styrofoam ball has just been shot straight up. Air resistance is not negligible.
45. You are a rock climber going upward at a steady pace on a vertical wall.
46. You’ve slammed on the brakes an your car is skidding to a stop while going down a 20° hill.
47. You’ve just kicked a rock on the sidewalk and it is now sliding along the concrete.
48. You’ve jumped down from a platform. Your feet are touching the ground and your kees are flexing as you stop.
49. You are bungee jumping from a high bridge. You are moving downward while the bungee cord is stretching.
50. Your friend went for a loop-the-loop ride at the amusement park. Her car is upside down at the top of the loop.
51. A spring-loaded gun shoots a plastic ball. The trigger has just been pulled and the bull is starting to move down the barrel. The barrel is horizontal.
52. A person on a bridge throws a rock straight down toward the water. The rock has just been released.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- Two friends are sitting in a stationary canoe. At t = 3.0 s the person at the front tosses a sack to the person in the rear, who catches the sack 0.2 s later. Which plot given shows the velocity of the boat as a function of time? Positive velocity is forward, negative velocity is backward. Neglect any drag force on the canoe from the water.arrow_forward13. The figure shows a block of mass M on an inclined plane at an angle 0 with respect to the horizontal. There is friction between the block and inclined plane. When released from rest, the block accelerates down the inclined plane and travels a distance d along the surface. What is the expression for the final velocity of the block at the end of the inclined plane? M 2gd(sino + 4gcosf0) a. b. 2gd(cos) +H;sin0) c. V2gd(sino - Hgcos0) d. V2gd(cos0 – Hsino) e. gdsinearrow_forwardAn astronaut named Johnny is driving to their rocket when they suddenly need to break. The car weighs 1900 lbs and is moving at 35 mi/hr when the astronaut slams on the breaks on dry road. Find the amount of time needed for the car to stop. Use k = 0.7. How many forces are present in the a direction? 1 It'll take the car 11.412 x seconds to stop.arrow_forward
- An object with a mass of 7.5 kg accelerates 8.3 m/s2 when an unknown force is applied to it. What is the amount of the force? An object with a mass of 2000 g accelerates 8.3 m/s2 when an unknown force is applied to it. What is the amount of the forcearrow_forwardProblem 4. Boat in a lake. A boat floats in a lake. When the boat moves the force of resistance is proportional to the velocity of the boat. Initially the boat is at rest. A person walks from the stern to the bow of the boat. What will be the position of the boat long time after the person stopped moving?arrow_forwardYou have landed on an unknown planet, Newtonia, and want to know what objects will weigh there. You find that when a certain tool is pushed on a frictionless horizontal surface by a 12.9 N force, it moves 16.8 m in the first 2.20 s, starting from rest. You next observe that if you release this tool from rest at 10.0 m above the ground, it takes 2.78 s to reach the ground. 1. What does the tool weigh on Newtonia? 2. What would it weigh on Earth?arrow_forward
- A 68.5 kg person is standing inside an elevator. The elevator is going from the 1st floor to the 9th floor. As the elevator approaches the 9th floor there is a moment when the elevator’s speed is 2.90 m/s and is slowing at a rate of 0.904 m/s2. What is the net force acting on the person at this moment?arrow_forwardThe question refers to a coin which is tossed straight up into the air. After it is released, it moves upward, reaches its highest point and falls back down again. Use one of the following choices (A through G) to indicate the force acting on the coin in the case described below. Answer choice J if you think that none is correct. Ignore any effects of air resistance. The coin is moving upward after it is released. A. The force is down and constant. B. The force is down and increasing C. The force is down and decreasing D. The force is zero. E. The force is up and constant. F. The force is up and increasing G. The force is up and decreasing OA OB OC OD OE OF OGarrow_forwardYou are in charge of improving the safety of a carnival ride. The ride involves a 165 kg cart travelling at 13.1 the wall. m S toward a brick wall. The cart is supposed to stop at the last second just before it hits You want the cart to come to a complete stop within a time of 1.85 s. What force is required to stop the cart in this amount of time? F = N Based on the parts you have been provided, you are able to exert a force of 3820 N on the cart. What is the maximum initial speed that the cart could have and still stop within 1.85? Vmaximum = m Sarrow_forward
- Mary applies a force of 70 N to push a box with an acceleration of 0.60 m/s2. When she increases the pushing force to 82 N, the box's acceleration changes to 0.80 m/s2. There is a constant friction force present between the floor and the box. The mass of the box in kilograms is 60. What is the coefficient of kinetic friction between the floor and the box?arrow_forwardA particle of mass m traveling horizontally with initial speed v0 encounters a dissipative force f (v) = cv2, where c is a constant. a.Provide the equation of motion of the particle with an appropriate initial condition. b. Find the speed of the particle v(t). c. Find its acceleration a(t). d. What is its distance traveled x(t)?arrow_forward2. A rocket at rest that has a mass of 2 kg. It achieves a speed of 200 m/s at launch. If the engine provides thrust for 4 seconds, what is the total force (the thrust) provided by the engine? 3. A soccer player kicks a 0.75 kg ball with a force of 150 N. What is the velocity of the ball if his foot was in contact with ball for 0.08s ?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning