Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 44E
What is the energy of the photon with the frequency you calculated in Exercise 5.43?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
If a photon has energy of 3.3 eV, calculate its frequency.
Report your answer in multiples of 1012 Hz. (For example, if your answer is 1.2 x
10¹3 Hz, you would enter 12 into the answer blank.)
Your Answer:
Answer
What is the energy of a light quantum (photon) which has a wavelength of 600nm? Compare the energy with the electron wave energy calculated in problem 2 (6.6935 x 10-25) and disscuss the difference.
Determine the energy of a 891 nm photon in eV. Express your answer in three decimal places.
Chapter 5 Solutions
Astronomy
Ch. 5 - What distinguishes one type of electromagnetic...Ch. 5 - What is a wave? Use the terms wavelength and...Ch. 5 - Is your textbook the kind of idealized object...Ch. 5 - Where in an atom would you expect to find...Ch. 5 - Explain how emission lines and absorption lines...Ch. 5 - Explain how the Doppler effect works for sound...Ch. 5 - What kind of motion for a star does not produce a...Ch. 5 - Describe how Bohr’s model used the work of...Ch. 5 - Explain why light is referred to as...Ch. 5 - Explain the difference between radiation as it is...
Ch. 5 - What are the differences between light waves and...Ch. 5 - Which type of wave has a longer wavelength: AM...Ch. 5 - Explain why astronomers long ago believed that...Ch. 5 - Explain what the ionosphere is and how it...Ch. 5 - Which is more dangerous to living things, gamma...Ch. 5 - Explain why we have to observe stars and other...Ch. 5 - Explain why hotter objects tend to radiate more...Ch. 5 - Explain how we can deduce the temperature of a...Ch. 5 - Explain what dispersion is and how astronomers use...Ch. 5 - Explain why glass prisms disperse light.Ch. 5 - Explain what Joseph Fraunhofer discovered about...Ch. 5 - Explain how we use spectral absorption and...Ch. 5 - Explain the results of Rutherford’s gold foil...Ch. 5 - Is it possible for two different atoms of carbon...Ch. 5 - What are the three isotopes of hydrogen, and how...Ch. 5 - Explain how electrons use light energy to move...Ch. 5 - Explain why astronomers use the term “blueshifted”...Ch. 5 - If spectral line wavelengths are changing for...Ch. 5 - Make a list of some of the many practical...Ch. 5 - With what type of electromagnetic radiation would...Ch. 5 - Why is it dangerous to be exposed to X-rays but...Ch. 5 - Go outside on a clear night, wait 15 minutes for...Ch. 5 - Water faucets are often labeled with a red dot for...Ch. 5 - Suppose you are standing at the exact center of a...Ch. 5 - How could you measure Earth’s orbital speed by...Ch. 5 - Astronomers want to make maps of the sky showing...Ch. 5 - The greenhouse effect can be explained easily if...Ch. 5 - An idealized radiating object does not reflect or...Ch. 5 - Why are ionized gases typically only found in very...Ch. 5 - Explain why each element has a unique spectrum of...Ch. 5 - What is the wavelength of the carrier wave of a...Ch. 5 - What is the frequency of a red laser beam, with a...Ch. 5 - You go to a dance club to forget how hard your...Ch. 5 - What is the energy of the photon with the...Ch. 5 - If the emitted infrared radiation from Pluto, has...Ch. 5 - What is the temperature of a star whose maximum...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Q5. Convert to K.
a) 181.1 K
b) 358 K
c) 29.4 K
d) 302.6 K
Chemistry: A Molecular Approach (4th Edition)
A womans father has ornithine transcarbamylase deficiency (OTD), an X-linked recessive disorder producing menta...
Genetic Analysis: An Integrated Approach (3rd Edition)
EVOLUTION CONNECTION Crossing over is thought to be evolutionarily advantageous because it continually shuffles...
Campbell Biology (11th Edition)
What name is given to the zone of greatest seismic activity?
Applications and Investigations in Earth Science (9th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Sketch the following spectra that would be obtained for 2-chloroethanol: a. The 1H NMR spectrum for an anhydrou...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Question #1 a) Plot the energy spectral density p(2) of black-body radiation at T=3000 K and at 7= 5000 K. (These correspond to the apparent temperatures of "warm white" and "cool white" light bulbs.) (Note: Show both curves on a single graph, using a standard plotting software. Report the wave- length in nanometers.) b) For each of these two temperatures, at which wavelength is the radiation intensity maximum? (Note: Report the wavelengths in nanometers. Your answers should be consistent with the curves from part a), of course.)arrow_forwardWhat is the energy range (in joules and eV) of photons in the visible spectrum, of wavelength 410 nm to 740 nm ? Express your answers using two significant figures. Enter your answers numerically separated by a comma. ΜΕ ΑΣΦ Emin, Emax = Submit Request Answer Part B ? J Express your answers using two significant figures. Enter your answers numerically separated by a comma. Emin, Emax = Η ΑΣΦ ? eV Submit Request Answerarrow_forwardGamma rays (?-rays) are high-energy photons. In a certain nuclear reaction, a ?-ray of energy 0.836 MeV (million electronvolts) is produced. Compute the frequency of such a photon. How do I enter 2.02*10^20 in the answer window?arrow_forward
- What is the wavelength in meters of a photon generated by an electron going from n = (8.000x10^0) to n= (1.00x10^0)? Answer to 3 significant figures and in scientific notation. Sorry about the two n values, I can either do scientific notation need for the answer or you have to enter the answer without scientific notation. I can't change between them. Note: Your answer is assumed to be reduced to the highest power possible. Your Answer: Answer x10 unitsarrow_forwardyou are sitting at a desk in a completely dark room. the room is at normal indoor room temperature. there is an inanimate and un-powered object on your desk (e.g., a box, pencil case, notebook,...). what wavelength of blackbody radiation is emitted from that object with greatest intensity? (assume the object has the same temperature as the rest of the room.) express your answer in microns.arrow_forwardHow fast should an electron move such that its kinetic energy is equal to the energy of a red photon (λ = 722 nm). For simplicity, express your answer as v x 105 m/s and type in just the value of v. Use three significant figures in your answer.arrow_forward
- What is the maximum wavelength shift Δλ = Blank 1. Calculate the answer by read surrounding text. fm for a Compton collision between a photon that travels at a speed of 254214189.33m/s and a free proton with mass 1.69E-27kg? [NOTE: Units of wavelength shift must be femtometer (fm). Enter only a numerical answer in two decimals on a space provided.]arrow_forward14.arrow_forwardCalculate the energy of a photon of frequency 3.5 x 1015 Hz, in electronvolts (eV). Do an online search to find the conversion factor between electronvolts and joules.arrow_forward
- Calculate the momentum of a photon of frequency 2.5 x 1015 m/s and type in just the value of p. Hz in kg m/s. Write your value as px 10-27 kgarrow_forwardCalculate the wavelength (λ) for an ultraviolet photon having a frequency ν = 2.33 × 1015 s–1. Express your answer in units of nanometers.arrow_forwardWhat will be the energy associated with a blue photon (in electronvolts, eV), if the frequency of the blue light is 650 THz (Terahertz (THz); 1 Tera = 1012)? [Hint: Use Planck's equation: E - hf to calculate the photon energy! h- Planck's constant – 6.63 x 10-34 Js = 4.14 x1015 eVs] A. 6.5 eV B. 6.5×10-3 eV C. 2.7 eV D. 2.7×10-27eV E. 2.7x107 eVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON