Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 22E
Explain how we use spectral absorption and emission lines to determine the composition of a gas.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the radius of the radius of the star? USE IMAGE AS REFERNCE
What is the vrms of hydrogen on the surface of the sun if its temperature is 5.36E3 degC? What is the vrms of hydrogen on the surface of the earth if its temperature is 21.2 degC?
A window has heavy curtains in front of it. At night the curtains are closed to minimise heat loss.
During the day the curtains are pulled aside exposing the glass window. How much heat is lost
through the 1.0 m x 1.0 m square glass window pane that is 4mm thick when the inside
temperature is 20 degree C and the outside temperature is -6 C (negative 6.0) in 12 hrs?
( 1m = 100 cm) (1m = 1000mm)
%3D
Chapter 5 Solutions
Astronomy
Ch. 5 - What distinguishes one type of electromagnetic...Ch. 5 - What is a wave? Use the terms wavelength and...Ch. 5 - Is your textbook the kind of idealized object...Ch. 5 - Where in an atom would you expect to find...Ch. 5 - Explain how emission lines and absorption lines...Ch. 5 - Explain how the Doppler effect works for sound...Ch. 5 - What kind of motion for a star does not produce a...Ch. 5 - Describe how Bohr’s model used the work of...Ch. 5 - Explain why light is referred to as...Ch. 5 - Explain the difference between radiation as it is...
Ch. 5 - What are the differences between light waves and...Ch. 5 - Which type of wave has a longer wavelength: AM...Ch. 5 - Explain why astronomers long ago believed that...Ch. 5 - Explain what the ionosphere is and how it...Ch. 5 - Which is more dangerous to living things, gamma...Ch. 5 - Explain why we have to observe stars and other...Ch. 5 - Explain why hotter objects tend to radiate more...Ch. 5 - Explain how we can deduce the temperature of a...Ch. 5 - Explain what dispersion is and how astronomers use...Ch. 5 - Explain why glass prisms disperse light.Ch. 5 - Explain what Joseph Fraunhofer discovered about...Ch. 5 - Explain how we use spectral absorption and...Ch. 5 - Explain the results of Rutherford’s gold foil...Ch. 5 - Is it possible for two different atoms of carbon...Ch. 5 - What are the three isotopes of hydrogen, and how...Ch. 5 - Explain how electrons use light energy to move...Ch. 5 - Explain why astronomers use the term “blueshifted”...Ch. 5 - If spectral line wavelengths are changing for...Ch. 5 - Make a list of some of the many practical...Ch. 5 - With what type of electromagnetic radiation would...Ch. 5 - Why is it dangerous to be exposed to X-rays but...Ch. 5 - Go outside on a clear night, wait 15 minutes for...Ch. 5 - Water faucets are often labeled with a red dot for...Ch. 5 - Suppose you are standing at the exact center of a...Ch. 5 - How could you measure Earth’s orbital speed by...Ch. 5 - Astronomers want to make maps of the sky showing...Ch. 5 - The greenhouse effect can be explained easily if...Ch. 5 - An idealized radiating object does not reflect or...Ch. 5 - Why are ionized gases typically only found in very...Ch. 5 - Explain why each element has a unique spectrum of...Ch. 5 - What is the wavelength of the carrier wave of a...Ch. 5 - What is the frequency of a red laser beam, with a...Ch. 5 - You go to a dance club to forget how hard your...Ch. 5 - What is the energy of the photon with the...Ch. 5 - If the emitted infrared radiation from Pluto, has...Ch. 5 - What is the temperature of a star whose maximum...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why would it be impossible for organisms to grow at 200 or 300C?
Brock Biology of Microorganisms (15th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which describes our understanding of f...
Cosmic Perspective Fundamentals
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
17. A speed skater moving to the left across frictionless ice at 8.0 m/s hits a 5.0-m-wide patch of rough ice....
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the vrms of hydrogen on the surface of the sun if its temperature is 5.44E3 degC? What is the vrms of hydrogen on the surface of the earth if its temperature is 21.1 degC?arrow_forwardSuppose YOUR body temperature averages 98.6 F. 1. How much radiant energy in Wm^-2 is emitted from YOUR body? 2. What is the total radiant energy in W that is emitted from YOUR body? 3. At what wavelength does YOUR body emit the largest amount of radiant energy?arrow_forwardfrom d to f please thank youarrow_forward
- d&earrow_forwardPlease solve accurate. Thanksarrow_forward10:49 LTE O < All iCloud Imagine that you are observing a star and you find the wavelength of peak emission for the star to be 400 nm. What would the wavelength of peak emission be for a new star that has a surface temperature that is a quarter of the original star? Using the same pair of stars from the first question, ● how does the luminosity (the energy output) of each star compare if we assume that both stars are the same size? (Please provide a specific factor or proportion) What type of radiation/light (from the electromagnetic spectrum) is each star emitting? Now imagine that we determine that the wavelength of peak emission of the original star was determined to be bluer than it should be based on other observations. Would this indicate that the star is moving towards us or away from us relatively speaking through space? 0arrow_forward
- The Sun has a radius of about 700,000 km and a surface temperature of 5800 K. Assuming it is a perfect blackbody (an emissivity of 1), what is the rate of energy radiated (in W) from the surface of the Sun? (Hint: the surface area of a sphere is 4πR2; enter your answer in scientific notation, 1.23E12 means 1.23 * 1012).arrow_forwardCan you answer the question?arrow_forward1.1) In a star's core the average mass number for ions which are not hydrogen or helium is 10. The mass fractions of hydrogen is 0.60, of helium is 0.38, and all other elements is 0.02. Calculate the average ion mass in units of mH. 1.2) Explain two assumptions behind the Kelvin-Helmholtz timescale. 1.3) In the outer core of a massive star the temperature is 108 K. The mean particle weight is u = 0.62. Calculate the density of this region if the radiation pressure is equal to the thermal pressure. 1.4) For temperatures around 1.5 x 10' K in a stellar core, describe why it is hydrogen instead of heavier ions which undergo fusion. Also, when the temperature is higher, describe why higher mass ions can undergo fusion. 1.5) Describe two possible causes of convective instability in the outer regions of a low mass star.arrow_forward
- Why don’t we see hydrogen Balmer lines in the spectra of stars with temperatures of 3,200 K? a. There is no hydrogen in stars this cool. b. The stars are hot enough that most of the hydrogen is ionized and the atoms cannot absorb energy. c. These stars are so cool that nearly all of the hydrogen atoms are in the ground state. d. Stars of this temperature are too cool to produce an absorption spectrum. e. Stars of this temperature are too hot to produce an absorption spectrum.arrow_forward6.arrow_forwardWhat is the wavelength in micrometers of peak emission for a black body at 33.5°C? (c = 3.0 × 108 m/s, Wien displacement law constant is 2.9 × 10-3 m ∙ K, σ = 5.67 × 10-8 W/m2 ∙ K4). Please give your answer with one decimal place.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY