Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 36E
Astronomers want to make maps of the sky showing sources of X-rays or gamma rays. Explain why those X-rays and gamma rays must be observed from above Earth’s atmosphere.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Gamma rays typically have frequencies above 10 exahertz (or 10^19 Hz). What is the corresponding
wavelength in units of picometers (pm) of a gamma ray with a 3*10^19 H? (1pm-10^-12m)
Accessibility: Good to go
Q Search
F6
F7
F8
8
F9
F10
F11
F12
PrtSc
Gamma rays typically have frequencies above 10 exahertz (or >1019 Hz). What is the corresponding wavelength in units of picometers (pm) of a gamma ray with a 3 * 1019 Hz? (1 pm = 10-12 m)?
Calculate the wavelength A1 for gamma rays of frequency fi = 6.10x1021 Hz .
Express your answer in meters.
Chapter 5 Solutions
Astronomy
Ch. 5 - What distinguishes one type of electromagnetic...Ch. 5 - What is a wave? Use the terms wavelength and...Ch. 5 - Is your textbook the kind of idealized object...Ch. 5 - Where in an atom would you expect to find...Ch. 5 - Explain how emission lines and absorption lines...Ch. 5 - Explain how the Doppler effect works for sound...Ch. 5 - What kind of motion for a star does not produce a...Ch. 5 - Describe how Bohr’s model used the work of...Ch. 5 - Explain why light is referred to as...Ch. 5 - Explain the difference between radiation as it is...
Ch. 5 - What are the differences between light waves and...Ch. 5 - Which type of wave has a longer wavelength: AM...Ch. 5 - Explain why astronomers long ago believed that...Ch. 5 - Explain what the ionosphere is and how it...Ch. 5 - Which is more dangerous to living things, gamma...Ch. 5 - Explain why we have to observe stars and other...Ch. 5 - Explain why hotter objects tend to radiate more...Ch. 5 - Explain how we can deduce the temperature of a...Ch. 5 - Explain what dispersion is and how astronomers use...Ch. 5 - Explain why glass prisms disperse light.Ch. 5 - Explain what Joseph Fraunhofer discovered about...Ch. 5 - Explain how we use spectral absorption and...Ch. 5 - Explain the results of Rutherford’s gold foil...Ch. 5 - Is it possible for two different atoms of carbon...Ch. 5 - What are the three isotopes of hydrogen, and how...Ch. 5 - Explain how electrons use light energy to move...Ch. 5 - Explain why astronomers use the term “blueshifted”...Ch. 5 - If spectral line wavelengths are changing for...Ch. 5 - Make a list of some of the many practical...Ch. 5 - With what type of electromagnetic radiation would...Ch. 5 - Why is it dangerous to be exposed to X-rays but...Ch. 5 - Go outside on a clear night, wait 15 minutes for...Ch. 5 - Water faucets are often labeled with a red dot for...Ch. 5 - Suppose you are standing at the exact center of a...Ch. 5 - How could you measure Earth’s orbital speed by...Ch. 5 - Astronomers want to make maps of the sky showing...Ch. 5 - The greenhouse effect can be explained easily if...Ch. 5 - An idealized radiating object does not reflect or...Ch. 5 - Why are ionized gases typically only found in very...Ch. 5 - Explain why each element has a unique spectrum of...Ch. 5 - What is the wavelength of the carrier wave of a...Ch. 5 - What is the frequency of a red laser beam, with a...Ch. 5 - You go to a dance club to forget how hard your...Ch. 5 - What is the energy of the photon with the...Ch. 5 - If the emitted infrared radiation from Pluto, has...Ch. 5 - What is the temperature of a star whose maximum...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
If isomer A is heated to about 100 C, a mixture of isomers A and B is formed. Explain why there is no trace of ...
Organic Chemistry (8th Edition)
2 Of the uterus, small intestine, spinal cord, and heart, which is/are in the dorsal body cavity?
Anatomy & Physiology (6th Edition)
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic a. One lilac species lives on...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- My question is: What is the frequency and wavelength of a 50 meV gamma-ray photon? How do I find it?arrow_forwardFor the intensity of a monochromatic beam of gamma rays to be reduced to 30% of its initial value, what thickness of a material is needed if it is measured in terms of the half-value layer for that material?arrow_forwardFor years, exposure to ultra-violet radiation from prolonged time in the sun has been the major identified cause of skin cancer. New research is showing that ultra-violet is not the only type of radiation from the sun that can increase the risk of skin cancer. Rates of skin cancer among pilots are twice that of non-pilots, but the glass used in planes blocks most the ultra-violet radiation. Pilots are also exposed to x-rays from the sun during flight. The x-rays that pilots are exposed to in one day of work are equivalent to a chest x-ray. Although getting an x-ray for medical reasons is believed to be safe, researchers believe that the frequent exposer that pilots experience increases their risk for skin cancer. The Electromagnetic Spectrum IMHE IGHE Fregiency r 10 10 10 1e 10 10" 10 10 10" Camme wened Wwwdengih in 10 10 10 1 10 10 10 10 o* 10* 10 10 10 19" 1e 10 1o Ikm Imm Tum Inm Ipm Use your knowledge of the electromagnetic spectrum to support the claim that pilots are at a greater…arrow_forward
- Give some examples of two types of radiations.arrow_forwardA healthy person has a body temperature of 98.6°. Use the properties of blackbody radiation to work out the precise wavelength of the peak radiation.arrow_forwardThe Sun has a temperature of approximately 5800 K. a) What is the peak wavelength of light emitted by the Sun? b) How much energy does one photon of this wavelength have? c) How much power is emitted by the Sun if it has an emissivity of 0.9? (The Sun has a radius of 6.96x10^8 m.) d) How much mass is converted to energy every second in the Sun's core to drive its power emission? Please write your answers in the space below and email your work. ALT+510(BOLO ALTHEN+510 (Mac)arrow_forward
- The Sun has a temperature of approximately 5800 K. a) What is the peak wavelength of light emitted by the Sun? b) How much energy does one photon of this wavelength have? c) How much power is emitted by the Sun if it has an emissivity of 0.9? (The Sun has a radius of 6.96x10^8 m.) d) How much mass is converted to energy every second in the Sun's core to drive its power emission? Please write your answers in the space below and email your work. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).arrow_forwardIn the photon energy range 2 to 10 keV, X rays coming from the Crab Nebula have an intensity of 2.4*10^(-11) W/m^2 when they reach the earth. The Crab Nebula is 6,523 light years away from the Earth. Assume that the X-Rays are emitted uniformly in all directions by the source. Calculate the power emitted by the Nebula in the form of X-rays in this energy range, in watts. 1 light year = distance that light travels in one year = 3.16*10^7 s * 3*10^8 m/sarrow_forwardThe average human body temperature is 98.6°F. According to ________ law, if your body temperature is 98.6°F then your wavelength of peak emission is around 9 microns (µm). This implies that your body emits _____________ radiation. Stefan-Boltzman, infrared Stefan-Boltzman, visible Wien's, infrared Wien's, visiblearrow_forward
- Photons of a certain infrared light have an energy of 1.33 * 10-19 J. (a) What is the frequency of this IR light? =______Hz(b) Use λ = c/f to calculate its wavelength in nanometers. =_____nmarrow_forwardQUESTION 1 A photon emitted by a blackbody has an energy of 1.021 J. What is the frequency of such a photon?(h=6.63.10-34 J.s) QUESTION 2 What is the energy (in eV) of a gamma-ray photon with frequency f=5.67-102¹ Hz? (h=4.136-10-15eV/Hz) QUESTION 3 The ground level of the hydrogen atom has an energy E,= 13.6 eV while the first excited state has an energy Calculate the energy difference of an electron going from the first excited state back to the ground state. 1 QUESTION 4 What is the frequency of the photon emitted by the electron in Question 3? QUESTION 5 E 2= -3.4 eV. An electron has a wavelength of 0.267 nm (1 nm = 10-9 m). What is the speed of such electron orbiting the nucleus? ( m=9.11-10-31 kg)arrow_forwardYour research team analysis the light of a mysterious object in space. By using a spectrometer,you can observe the following spectrum of the object. The Hα line peak is clearly visible:(a) Mark the first four spectral lines of hydrogen (Hα, Hβ, Hγ, Hδ) in the spectrum.(b) Determine the radial velocity and the direction of the object’s movement.(c) Calculate the distance to the observed object.(d) What possible type of object is your team observing?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning