Chemistry
Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 144AP
Interpretation Introduction

Interpretation:

The change in temperature for a reaction is to be determined.

Concept introduction:

Heat absorbed or released in a reaction is associated with the change in temperature in the reaction, which is determined as follows:

q=smΔT

Where, s is the specific heat, m is mass of the sample, and ΔT is the change in temperature.

Specific heat is the heat required to increase the temperature of 1 g substance by 1C. Its S. I. unit is (J/g.oC).

The concentration (molarity) of a solution is determined by the following equation:

M=mV

Where, m is the number of moles and V is the volume of solution.

Expert Solution & Answer
Check Mark

Answer to Problem 144AP

Solution: The change in temperature is 0.0906C and the final temperature is 21.1C.

Explanation of Solution

Given information: A 50 ml of 0.0135 M HBr is mixed with 50 ml of 0.00755 M Ba(OH)2 in coffee-cup calorimeter at room temperature (21C). The molar heat of neutralization is 56.2 kJ/mol.

The concentration (molarity) of a solution is determined by the following equation:

M=mV

It can be rewritten as:

M×V=m

The equation for ionization of HBr is as follows:

HBrH++Br

From the reaction above, it is clear that the number of moles of HBr and H are equal.

So, the number of moles of H+ is calculated as follows:

MH+×VH+=mH+

Substitute 0.0135 M for MH+ and 50 ml for VH+:

mH+=0.0135 M×50 mL=0.0135 M×50 L1000=6.75×104 mol

The equation for ionization of Ba(OH)2:

Ba(OH)2Ba2++2OH

From the reaction, it is clear that the number of moles of Ba(OH)2 and OH are equal.

So, the number of moles of OH can be calculated as follows:

MOH×VOH=nOH

Substitute 0.00755 M for MOH and 50 ml for VOH:

nOH=0.00755 M×50 mL×2=0.00755 M×50 mL1000=7.50×104 mol

So, HBr is a limiting reagent.

Now, heat produced by the reaction is calculated as:

q=mHBr×ΔH

Substitute 56.2 kJ/mol for ΔH and 6.75×104 mol for (mHBr):

qrxn=6.75×104 mol×56.2 kJ/mol=379.3 ×104 kJ=379.3 ×104×103 kJ=37.9 J

As it is known that qrxn=qsurr, therefore qsurr=37.9 J.

So, heat is given by:

qsurr=sH2OmH2OΔT…… (1)

Mass of H2O is calculated by the following equation:

mH2O=VH2O×dH2O

Here, mH2O is the mass of H2O, VH2O is the volume of H2O, and dH2O is the density of H2O.

Substitute 100 mL for VH2O and 1 g/mL for dH2O:

mH2O=100 mL×1 g/mL=100 g

Now, substitute 37.9 J for qsurr, 4.184 J/g.oC for sH2O and 100 g for mH2O in equation (1):

37.9 J=4.184 J/g.oC×100 g×ΔT37.9 J=418.4 J/oC×ΔT37.9 J418.4 J/oC=ΔT0.0906oC=ΔT

Now, the change in temperature is determined by the following equation:

ΔT=(TfTi)…… (2)

Here, ΔT is the change in temperature, Tf is the final temperature, and Ti is the initial temperature.

Equation (2) can be rewritten as follows:

Tf=(ΔT+Ti)

Substitute 0.0906oC for ΔT and 21C for Ti:

Tf=(0.0906oC+21C)=21.0906oC21.1oC

Conclusion

The change in temperature for the given reaction is 0.0906C and the final temperature achieved is approximately equal to 21.1C.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 5 Solutions

Chemistry

Ch. 5.2 - Practice ProblemBUILD Calculate the magnitude of q...Ch. 5.2 - Prob. 1PPCCh. 5.2 - Calculate the overall change in internal energy...Ch. 5.2 - Calculate w, and determine whether work is done by...Ch. 5.2 - Prob. 3CPCh. 5.2 - Prob. 4CPCh. 5.3 - Prob. 1PPACh. 5.3 - Prob. 1PPBCh. 5.3 - Prob. 1PPCCh. 5.3 - Given the thermochemical equation: H 2 ( g ) + Br...Ch. 5.3 - Given the thermochemical equation: 2Cu 2 O ( s ) →...Ch. 5.4 - Prob. 1PPACh. 5.4 - Prob. 1PPBCh. 5.4 - Prob. 1PPCCh. 5.4 - Prob. 1CPCh. 5.4 - Prob. 2CPCh. 5.4 - Prob. 3CPCh. 5.4 - 5.4.4 Quantities of 50.0 mL of 1.00 M HCl and 50.0...Ch. 5.5 - Prob. 1PPACh. 5.5 - Prob. 1PPBCh. 5.5 - Prob. 1PPCCh. 5.5 - Prob. 1CPCh. 5.5 - Prob. 2CPCh. 5.5 - 5.5.3 Each diagram shows a systems before and...Ch. 5.5 - Prob. 4CPCh. 5.6 - Prob. 1PPACh. 5.6 - Prob. 1PPBCh. 5.6 - Prob. 1PPCCh. 5.6 - Prob. 1CPCh. 5.6 - Prob. 2CPCh. 5.6 - Prob. 3CPCh. 5.6 - Prob. 4CPCh. 5.7 - Prob. 1PPACh. 5.7 - Prob. 1PPBCh. 5.7 - Prob. 1PPCCh. 5.8 - Prob. 1PPACh. 5.8 - Prob. 1PPBCh. 5.8 - Practice ProblemCONCEPTUALIZE The diagrams...Ch. 5.9 - Practice ProblemATTEMPT Use the following data to...Ch. 5.9 - Prob. 1PPBCh. 5.9 - Prob. 1PPCCh. 5 - Using data from Appendix 2, calculate the standard...Ch. 5 - Prob. 2KSPCh. 5 - Prob. 3KSPCh. 5 - Using only whole-number coefficients, the...Ch. 5 - Prob. 1QPCh. 5 - Prob. 2QPCh. 5 - Prob. 3QPCh. 5 - 5.4 A truck initially trawling at 60 km/h is...Ch. 5 - These are various forms of energy: chemical, heat,...Ch. 5 - 5.6 Define these terms: thermochemistry,...Ch. 5 - 5.7 Stoichiometry is based on the law of...Ch. 5 - Prob. 8QPCh. 5 - Decomposition reactions are usually endothermic,...Ch. 5 - Prob. 10QPCh. 5 - Prob. 11QPCh. 5 - Prob. 12QPCh. 5 - Prob. 13QPCh. 5 - Prob. 14QPCh. 5 - Prob. 15QPCh. 5 - Prob. 16QPCh. 5 - Prob. 17QPCh. 5 - Use the following diagrams for Problems 5.17 and...Ch. 5 - Consider these changes. (a) Hg ( t ) → Hg ( g )...Ch. 5 - Prob. 20QPCh. 5 - Prob. 21QPCh. 5 - 5.22 Explain the meaning of this thermochemical...Ch. 5 - Consider this reaction: 2 CH 3 OH ( l ) + 3 O 2 (...Ch. 5 - Prob. 24QPCh. 5 - Prob. 25QPCh. 5 - Prob. 26QPCh. 5 - Prob. 27QPCh. 5 - Prob. 28QPCh. 5 - Prob. 29QPCh. 5 - Prob. 30QPCh. 5 - Prob. 31QPCh. 5 - For most biological processes, the changes in...Ch. 5 - Prob. 33QPCh. 5 - 5.34 Define calorimetry and describe two commonly...Ch. 5 - A 6.22-kg piece of copper metal is heated from 20...Ch. 5 - Prob. 36QPCh. 5 - Prob. 37QPCh. 5 - A 0.1375-g sample of solid magnesium is burned in...Ch. 5 - A quantity of 2 .00 × 10 2 mL of 0 .862 M HCl is...Ch. 5 - 5.40 A 50.75 g sample of water at is added to a...Ch. 5 - A 25.95-g sample of methanol at 35 .6°C is added...Ch. 5 - Prob. 42QPCh. 5 - Prob. 43QPCh. 5 - Consider the following data: Metal Al Cu Mass(g)...Ch. 5 - Prob. 45QPCh. 5 - Prob. 46QPCh. 5 - Prob. 47QPCh. 5 - Prob. 48QPCh. 5 - Prob. 49QPCh. 5 - Prob. 50QPCh. 5 - Prob. 51QPCh. 5 - Prob. 52QPCh. 5 - Prob. 53QPCh. 5 - Prob. 54QPCh. 5 - 5.55 Each diagram shows a system before and after...Ch. 5 - Prob. 56QPCh. 5 - 5.57 Determine the value of for the following...Ch. 5 - Prob. 58QPCh. 5 - Prob. 59QPCh. 5 - Prob. 60QPCh. 5 - Prob. 61QPCh. 5 - Prob. 62QPCh. 5 - Prob. 63QPCh. 5 - Prob. 64QPCh. 5 - Prob. 65QPCh. 5 - Prob. 66QPCh. 5 - Prob. 67QPCh. 5 - Prob. 68QPCh. 5 - Prob. 69QPCh. 5 - Prob. 70QPCh. 5 - Prob. 71QPCh. 5 - Prob. 72QPCh. 5 - Prob. 73QPCh. 5 - Prob. 74QPCh. 5 - Pentaborane - 9 ( B 5 H 9 ) is a colorless, highly...Ch. 5 - Prob. 76QPCh. 5 - Prob. 77QPCh. 5 - Prob. 78QPCh. 5 - Prob. 79QPCh. 5 - Prob. 80QPCh. 5 - Prob. 81APCh. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - Prob. 84APCh. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - Ethanol ( C 2 H 5 OH ) and gasoline (assumed to be...Ch. 5 - Prob. 90APCh. 5 - The heat of vaporization of a liquid ( Δ H vap )...Ch. 5 - Prob. 92APCh. 5 - Prob. 93APCh. 5 - Prob. 94APCh. 5 - Prob. 95APCh. 5 - Prob. 96APCh. 5 - 5.97 The enthalpy of combustion of benzoic add is...Ch. 5 - 5.98 At , the standard enthalpy of formation of...Ch. 5 - From the enthalpy of formation for CO, and the...Ch. 5 - In the nineteenth century, two scientists named...Ch. 5 - Prob. 101APCh. 5 - Prob. 102APCh. 5 - Prob. 103APCh. 5 - A quantity of 85 .0 mL of 0 .600 M HCl is mixed...Ch. 5 - Prob. 105APCh. 5 - Prob. 106APCh. 5 - A 4.117-g impure sample of glucose (C 4 H 12 O 6 )...Ch. 5 - Prob. 108APCh. 5 - In a constant-pressure calorimetry experiment, a...Ch. 5 - Prob. 110APCh. 5 - Give an example for each of the following...Ch. 5 - Prob. 112APCh. 5 - Prob. 113APCh. 5 - 5.114 A 3.52-g sample of ammonium nitrate was...Ch. 5 - 5.115 A quantity of is mixed with in a...Ch. 5 - Prob. 116APCh. 5 - Prob. 117APCh. 5 - Prob. 118APCh. 5 - Prob. 119APCh. 5 - Prob. 120APCh. 5 - 5.121 A gas company in Massachusetts charges 27...Ch. 5 - Prob. 122APCh. 5 - For reactions in condensed phases ( liquids and...Ch. 5 - Prob. 124APCh. 5 - Prob. 125APCh. 5 - The so-called hydrogen economy is based on...Ch. 5 - Prob. 127APCh. 5 - 5.128 Calculate the standard enthalpy change for...Ch. 5 - Prob. 129APCh. 5 - Prob. 130APCh. 5 - Why are cold, damp air and hot, humid air more...Ch. 5 - A woman expends 95 kJ of energy walking a...Ch. 5 - The carbon dioxide exhaled by sailors in a...Ch. 5 - Prob. 134APCh. 5 - Acetylene ( C 2 H 2 ) can be made by combining...Ch. 5 - (a) A person drinks four glasses of cold water ( 3...Ch. 5 - Both glucose and fructose are simple sugars with...Ch. 5 - Prob. 138APCh. 5 - Prob. 139APCh. 5 - Prob. 140APCh. 5 - Prob. 141APCh. 5 - Prob. 142APCh. 5 - 5.143 Hydrazine decomposes to form ammonia and...Ch. 5 - Prob. 144APCh. 5 - Prob. 145APCh. 5 - Prob. 1SEPPCh. 5 - What is the heat capacity ( C v ) of the...Ch. 5 - What is the energy content of the food? a) 22 .8...Ch. 5 - 4. What would be the effect on the result if the...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry by OpenStax (2015-05-04)
    Chemistry
    ISBN:9781938168390
    Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
    Publisher:OpenStax
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY