The partial pressures of each gas in the given sample containing mixture of 50 % helium and 50 % xenon by mass are needed to be determined, it the total pressure of sample is given as 600 torr . Concept introduction: Partial pressure of a gas in a mixture of gases is the pressure of that gas when it alone. Partial pressure of a gas in terms of its mole fraction and total pressure is, ` P A = χ A × P TOTAL Mole fraction of a molecule in a mixture is the ratio of number of moles of particular molecule to the sum of number of moles of all molecules in the mixture. Equation for mole fraction of a molecule in a mixture of two molecules (A and B) is, molecule fraction of A, ( χ A ) = numbers of moles of A (n A ) numbers of moles of A (n A ) + numbers of moles of B (n B ) Number of moles of a substance from its given mass is, Number of moles = Given mass Molecular mass Total pressure of a mixture of gases is the sum of individual partial pressures of constituted gases. To determine: the partial pressure of each gas in the given mixture of 50 % helium and 50 % xenon by mass.
The partial pressures of each gas in the given sample containing mixture of 50 % helium and 50 % xenon by mass are needed to be determined, it the total pressure of sample is given as 600 torr . Concept introduction: Partial pressure of a gas in a mixture of gases is the pressure of that gas when it alone. Partial pressure of a gas in terms of its mole fraction and total pressure is, ` P A = χ A × P TOTAL Mole fraction of a molecule in a mixture is the ratio of number of moles of particular molecule to the sum of number of moles of all molecules in the mixture. Equation for mole fraction of a molecule in a mixture of two molecules (A and B) is, molecule fraction of A, ( χ A ) = numbers of moles of A (n A ) numbers of moles of A (n A ) + numbers of moles of B (n B ) Number of moles of a substance from its given mass is, Number of moles = Given mass Molecular mass Total pressure of a mixture of gases is the sum of individual partial pressures of constituted gases. To determine: the partial pressure of each gas in the given mixture of 50 % helium and 50 % xenon by mass.
Solution Summary: The author explains the partial pressures of each gas in a given sample containing mixture of helium and xenon by mass are needed to be determined, and the total pressure of sample is given as
Interpretation: The partial pressures of each gas in the given sample containing mixture of
50% helium and
50% xenon by mass are needed to be determined, it the total pressure of sample is given as
600torr.
Concept introduction:
Partial pressure of a gas in a mixture of gases is the pressure of that gas when it alone.
Partial pressure of a gas in terms of its mole fraction and total pressure is,
`
PA=χA×PTOTAL
Mole fraction of a molecule in a mixture is the ratio of number of moles of particular molecule to the sum of number of moles of all molecules in the mixture.
Equation for mole fraction of a molecule in a mixture of two molecules (A and B) is,
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.